
System Synthesis and Modeling (CSCE 3953)

RISC Microprocessor

Zack Fravel

010646947

12/8/16

zpfravel@uark.edu

mailto:zpfravel@uark.edu

Parent Objective

 The parent objective of our final project in the course is to assemble our simple RISC
microprocessor. All of us have been assigned a unique test program within the confines of our
instruction set that will test the functionality of the design. We are to not only show the
behavioral simulation works in ModelSim, but we are also assigned to make sure the simulation
works synthesized through Design Vision as well. Other than the preliminary specifications of 16
bit-wide bus and various inputs and outputs (clk, reset, MFC, R_W, EN) for data/addressing
along with program memory and data memory being mapped to a single address space, it was
left to us to make a number of assumptions on exactly how to put all the pieces together.

Design Methodology

 Registers and Logic Modules

 - Program Counter (PC)

 The program counter (PC) is designed to tell the MAR where to look for the next
 instruction on every fetch. Notable inputs are the tri enable/PC_out and the
 increment/PC_inc signal, which is set to increase the value of the counter by
 one if raised to ‘1’ on every clock edge. Like all modules that drive the bus, the
 only time PC’s data is transferred to the bus is when PC_out, or the tri enable,
 goes high. Reset sets the value back to 16’h0000.

 - Memory Address Register (MAR) / Instruction Register (IR)

 The memory address register (MAR) and instruction register (IR) are one in the
 same. Their functionality is identical, therefore I designed one module for both
 and instantiated it twice at top level. They both check for an input enable signal
 and latches data from the bus if high. Since neither of these registers drive the bus
 (MAR goes to memory and IR goes to ID), they're outputting at all times to their
 respective destinations. Reset sets the value back to 16’h0000 (same as all others).

 - Memory Data Register (MDR)

 The memory data register (MDR) is the most complex of all the registers in the
 system. It’s internal structure consists of two registers, one for reading data from
 memory to the bus and the other for writing data from the bus to memory. On the
 positive edge of the clock, both check for reset and their respective In-enable

 signals where they latch data from their respective inputs. The only difference
 between the two is the ‘Read’ register’s output is dependent on a tri enable signal.

 - General Purpose Registers (GPR)

 The general purpose registers (GPR) are identical in form and functionality to the
 MAR and IR registers with one exception. Since they are meant to also be bus
 drivers, their output is dependent on a tri enable signal. I designed one module
 that is instantiated four times on the top level [GPR0 - GPR3]. Reset works as
 expected (16’h0000).

 - Arithmetic Logic Unit (ALU)

 The arithmetic logic unit (ALU) of our microprocessor needs is able to handle
 seven operations [add, sub, not, and, or, xor, xnor]. Internally, the ALU consists of
 three registers, two for operands and one for the result. On the positive edge of the
 clock, the ALU checks for the in-enable signals for these registers and latches data
 if high. Within the condition of the output register’s in-enable signal going high, I
 have a case statement that sets the value of the result register to the result of one
 of the seven operations dependent on a 3-bit operation signal. Finally, like all
 other drivers of the bus, the result output is dependent on a tri enable signal.

 - Instruction Decoder (ID)

 The instruction decoder (ID) is a fairly simple logic block. The ID brings in data
 from the IR, at all times, and on the positive edge of the clock checks for an
 enable signal. Whenever this enable signal goes high, it kicks off the ID and a
 case statement is run on the top four bits (instruction_in[15:12] or opcode) and
 sends an output start signal to the corresponding finite state machine (FSM) to
 start execution of the instruction. The ID passes the separate outputs of Opcode,
 Ri, and Rj for all of the FSM’s to work with.

 Control Signal Generation (Moore-Style Finite State Machines)

 All FSM’s described in this report are Moore-Style FSM’s with their outputs being solely
 dependent on their current state. They are all designed using three always blocks: transition,  
 next state logic, and output logic. All of the operation FSM’s send ‘finish’ signals that are | |
 together to the instruction fetch ‘start’ input. Also, the first stage of all the FSM’s besides
 fetch is incrementing the PC to ensure execution keeps flowing.

 - Instruction Fetch

 My fetch FSM design is designed to be start whenever reset goes high or its start
 signal set by the other FSM’s finish signal goes high. Whenever either of these
 conditions are met, the fetch process is kicked off. The FSM is responsible for
 sending out control signals that send the program counter’s value to the MAR,
 waits MFC (memory sends data to MDR), and sends the MDR’s data to the IR
 across the bus then finally kicks off the ID enable signal to decode the instruction.
 Once the instruction is decoded it kicks off the respective FSM for that instruction
 and thus the cycle continues.

 - R-type

 The R-Type FSM is kicked off whenever the ID receives an ADD, SUB, NOT,
 AND, OR, XOR, or XNOR instruction. The FSM also receives both operands
 from the ID. Once it starts, the FSM latches the first operand’s register contents
 into the first ALU register, then does the same for the second operand into the
 second ALU register. Finally, it sends the signals to calculate the result and sets
 the first operand’s register up to receive the data from the ALU across the bus.

 - Immediate-type

 The Immediate FSM is very similar to the R-Type FSM and is kicked off
 whenever the ID receives an ADDi or SUBi instruction. The Immediate FSM
 follows the same pattern of execution as the R-Type FSM, with the one exception
 and thats instead of latching register data to the second ALU register, the FSM
 drives the bus with an internal enable signal on a tri state output and sends the
 second operand to the ALU.

 - Move

 The Move FSM is extremely simple in its design. In three stages, the FSM
 increments the PC, and sets the corresponding signals to output data from the
 source register to the bus and latch it in the destination register.

 - Move Immediate

 The Move Immediate FSM does the exact same execution flow as the Move FSM
 except that instead of sending data from a source register, it sends data to the bus
 directly from the second operand much like the Immediate FSM with its internal
 tri enable signal.

 - Store

 The Store FSM sends the destination GPR’s value across the bus to the MAR then
 sends the source GPR’s value across the bus and latches to the MDR write
 register. The FSM then sets EN = 1 (memory enable), R_W = 0 (write) and waits
 for MFC. Once MFC goes high, we know the data is sent to memory and the FSM
 and finish execution.

 - Load

 The Load FSM is much like the Store except a little more complicated. First off,
 the FSM sends the source GPR to MAR across the bus. After that, EN and R_W
 are both set to 1 to indicate a ‘read’ operation. Once MFC goes high, we know the
 memory has our data ready and the FSM latches it into the read register in the
 MDR which then sends it to the destination GPR.

 Top Level Design

 The top level design wasn't too hard to implement since I kept fairly good track of signals in
 the steps along the way. I declare all my modules and signals, the important part comes in
 making the wire connection. All of my GPR in/out signals are the OR outputs of all the FSM
 GPR signals. The same goes for PC increment signals, Memory R_W, EN, MDR/MAR
 latch signals, ALU signals, and finally sets the instruction fetch start signal to the output of
 the OR of all the other FSM finish signals.

Instruction Set and Other Assumptions

 The figure on the right is the way I break down
the instructions into machine opcode. “0000” I
intentionally left blank to ensure the CPU would stop
running at the end of the program execution. In our
instruction set, the GPR registers are numbered 0, 1, 2,
3. In my design files, they are numbered 1, 2, 3, 4
respectively. This means, for example, ADD R0, R1
would translate to 0001000001000010. Other than that,
everything else should appear to follow how I’ve
described it elsewhere in the report. My testbench runs a
1 MHz clock speed to make sure any delay caused by
synthesis is avoided.

Synthesis Process

 My strategy with synthesizing the components was to get the behavioral simulation
working and synthesize blocks one at a time all under the same specifications. All of the blocks I
synthesized I did with the following timing constraints: 50 ns clock cycle with input delay of
2 ns, output delay of 0.5 ns, and a clock uncertainty of 0.15 ns.
 I was able to successfully synthesize and simulate with gate delay the entire processor,
with one exception being the Instruction Fetch FSM. Other than the Instruction Fetch FSM,
every module is simulated post-synthesis. The following are screenshots to show the gate delay
in all synthesized modules. Positive edge of the clock is always at the top for delay reference.

ALU

PC

GPR

MAR

MDR

ID

R-type

Immediate

Move

MoveImm

Store

Load

Simulation Method

 The only real way to test if the processor works is to
feed it a program! The figure on the right shows the program
that I was assigned to show to its completion with my design.
Since our top level modules do not need to be synthesized I
chose to go the simplest route, at least in my opinion, and have
my memory initialized in the testbench and have all the
memory function be simulated in the testbench itself.
 The figure below shows the program instantiated in
memory and translated into machine code within my testbench.
The full testbench is included in the report at the end with the
rest of the source code. In the next section I will provide a
screenshot of the overall waveform of the program simulation
as well as individual screenshots of each of the program
instructions with their transactions detailed on the bus. In the
following section I explain the waveforms and provide my
conclusions. In my testbench on read/write operations I have
the program wait two clock cycles then MFC gets raised to ‘1.’

Results

 Overall Program Waveform

 MOVI R2, #21

 SUBI R2, #11

 MOV R3, R2

 ADDI R2, #35

 XOR R2, R3

 INV R2

 STORE R3, (R2)

 LOAD (R2), R0

 Instruction Fetch

 Instruction Decode

Analysis and Conclusion

 Instruction Fetch

 This screenshot is taken from right at the beginning of execution, showing that the
 instruction fetch is indeed triggered by the reset signal at the beginning. Once
 triggered, the FSM waits a clock cycle then sets the PC out-enable and
 the MAR in-enable to send the instruction address to memory. On the next clock
 cycle the FSM sets memEn = 1 and memOp = 1. It can be observed on the
 waveform that this sets the memory signals R_W = 1 and EN = 1 at the top. The
 memory process in my testbench waits two clock cycles and sends the correct
 data to the MDR then raises MFC. Once MFC is raised, all the signals relating to
 the memory operation are dropped and the instruction is latched into the IR from
 the MDR. Finally, the ID enable signal is raised to decode the instruction (yellow
 arrow).

 Instruction Decode

 This screenshot shows the functionality of the ID over the course of the first four
 instructions. It can be seen that each time a new instruction is fetched (indicated
 ultimately by the ID enable signal pointed to by the yellow arrow in the last
 picture). Each time this enable signal goes high, the ID decodes the instruction
 and sets the corresponding FSM to start. In this screenshot, you see the Movi,
 Imm, Mov, and Imm signal again get raised, which is what we expect.

 Movi R2, #21

 This screenshot shows the first instruction in the test program being executed. The
 purple arrows indicate the PC increment signal and shows its connection with the
 FSM. The bold arrow shows when the R2-in enable signal gets raised and the thin
 yellow arrows show the data from p2, the second operand (21) in the instruction,
 being passed to the bus and into R2. The finish signal initiates the next instruction
 fetch.

 Subi R2, #11

 This screenshot shows the second instruction being executed, starting with the
 purple arrow to indicate PC increment. The light blue arrows indicate where the
 FSM sends the first operand and second operand into the ALU. First GPR2’s
 value gets transferred to the ALU, then the FSM sends the immediate value 11.
 After the ALU-out signal is raised it can be seen the correct result of 10 or
 16’h000a is then sent into R2.

 
 Mov R3, R2

 This waveform of the third instruction is very simple, the purple arrow indicates
 the PC being incremented and the yellow arrows indicate the transfer of R2 into
 R3 over the bus. Again, like all other waveforms the finish signal initiates the next
 fetch.

 Addi R2, #35

 In this waveform of the fourth instruction, it starts like the rest of the others do
 with a PC increment. Following the PC increment, the blue arrows indicate the
 FSM sending the data from R2 into the ALU, then sending the immediate value
 35 into the ALU. It’s worth noting here the ALUop signal near the bottom of the
 screenshot is connected to the operation signal in the ALU, controlling the
 function. The yellow arrows indicate when the correct value of 45 is calculated
 and transferred into R2.

 Xor R2, R3

 This waveform shows functionality of the R-type FSM since all our calculations
 previously have been immediate operations. The blue arrows indicate where the
 FSM sends R2 into the ALU, then R3. Finally, the yellow arrow indicates when
 the result is calculated and sent back into R2.

 Inv R2

 This waveform shows another R-type FSM operation. The purple arrow indicates
 the PC being incremented, like always. The blue arrows show the FSM latching
 data into the ALU registers. The FSM sends data into the ALU’s second register,
 however this wont affect our result since the answer is only dependent on the first
 register. The yellow arrows indicate where the correct inversion is calculated and
 sent back into R2.

 Store R3, (R2)

 In our second to last instruction, it begins like the rest with the purple arrow
 indicating a PC increment. The blue arrow indicates where the FSM sets the MAR
 to take in data from the bus, and below it we see the FSM set R2-out enable to
 drive the bus. This tells the memory where to look. The thin blue arrow shows this
 transfer. The yellow arrows indicate where the value stored in R3 is sent to the
 MDR. Then the FSM sets EN = 1 and R_W = 1 to indicate a write operation and
 the MFC signal indicates when the memory is done storing the data.

 Load (R2), R0

 Finally, in our last waveform we have our last PC increment while at the same
 time sending the contents of R2 to the MAR to tell the memory where to look.
 The FSM then sets R_W = 1 and EN = 1 to indicate a read operation. The star on
 the picture indicates where MFC goes high and the FSM tells the MDR to latch its
 data from the memory. Finally, the FSM makes the MDR send its contents to R0,
 giving R0 the correct final value of 16’h000a or 10.

 This concludes the description and analysis of my design for the RISC microprocessor. The
 following pages give the pre and post synthesis code for all modules, even the instruction
 fetch where I show the attempted simulation with it synthesized. Overall I feel I was very
 successful in executing the task set before me with a fully functioning design.  

Source Code

Top Level / Testbench (Behavioral Code)

 - CPU

 - Testbench

Modules (Pre-Synthesis Behavioral Code)

 - Program Counter

 - MAR / IR

 - MDR

 - GPR

 - ID

 - ALU

 - Instruction Fetch FSM

 - R-type FSM

-

-

 - Immediate FSM

 - Move FSM

 - MoveImm FSM

 - Store FSM

 - Load FSM

Modules (Post-Synthesis Netlist)

 - Program Counter

 - MAR / IR

 - GPR

 - MDR

 - MDR (cont)

 - ID

- ALU

 - Instruction Fetch FSM

 - Netlist

 - Attempted Simulation

 - R-type FSM

 - Immediate FSM

 - Move FSM

 - MoveImm FSM

 - Store FSM

 - Load FSM

