Zack Fravel

010646947

L001 4:10 - 5:55 PM

Lab2 - ALU

2/15/16

Fravel 1

Fravel 2

Introduction

The objective of this lab assignment was to write VHDL code to complete an already laid
out entity for a 16 bit ALU, or Arithmetic Logic Unit. The ALU is a unit that takes in two 16 bit
pieces of data and has the ability to add, subtract, and perform AND and OR logic based on a
selector input, much like a mux. The ALU also is supposed to be able to account for overflow
with signed addition, as well as put through a carry-out with addition. Along with that, the ALU
can tell whether the two inputs are less than, equal to, or greater than each other. Along with the
VHDL, we were also assigned to create a test bench for simulation testing.

Approach

As previously stated, the ALU is designed for 16 bit use. Therefore, the inputs a, b and
the output, r, are all 16 bit std logic vectors. The other input we have to worry about is “s,” for
selector, which is a 2 bit std logic vector. Each of s’s inputs: “00,” “01,” “10,” and “11” represent
the 4 different operations the ALU is designed to perform. The other five outputs are all std logic,
single bits. These outputs are cout (carry out), It (less than), eq (equal to), gt (greater than), and
overflow.

Since addition and subtraction are two operations our ALU is designed to perform, we
have to take into account a few things. First of all, we need to decide what kind of arithmetic we
want to use. For our purposes with the ALU, we want to use the ieee.numeric.all library to allow
for signed addition and subtraction using (+) and (-) respectively. The numeric library also
enables us to use “>,” “<,” and “=* logic for comparing the two inputs. We always want to take
into account for the carry out value and extend the result by a single bit to account for addition of

larger numbers. Another thing to take into account with signed addition of numbers is overflow,

Fravel 3

which is when the addition of two numbers of the same sign or subtraction of two numbers with
different signs yields an unexpected result. For example, two negative numbers being added
together and netting a positive result through the carry values.

That takes care of the first two operations. The final two were much easier to implement,
just by using standard AND and OR logic along with the “with-s-select” in the code. Below is
the VHDL code for the 16 bit ALU. The 17 bit signal r_sig was used as a temporary output value

so I was able to split the carry out and from the rest of the result as well as use it for the overflow

logic.

entity ALUlébit is

port (
a _vector (15 downto 0);
b _vector (15 downto 0);
s _vector (1l downto 0);
r ector (15 downto 0);
cout : logic;
1t, eq, gt : out std _logic;

overflow : out std logic

end ALUlébit;

architecture Behavioral of ALUlébit is

signal r_sig : std_logic_vector (16 downto 0);
begin

with s select

r sig <= std_l _vector(signed('0' & a) + signed('0' & b)) when "0O0",

std_logic_vector(signed('0' & a) - signed('0' & b)) when "O01",
(('0" & a) AND ('0' & b)) when "10",
(('0" & a) OR ('0' & b)) when "11";

r <= r_sig (15 downto 0):;
cout <= r_ sig(1l6):

1t <= '1l' when signed(a) < signed(b) else '0';
eq <= '1l' when signed(a) = signed(b) else '0';
gt <= '1l' when signed(a) > signed(b) else '0';

overflow <= '1' when s <= "00" and (a(15) = b(15) and r_sig(15) /= a(15))
else '1l' when s <= "01" and (a2(15) /= b(15)) and r_sig(1l5) /= a(l5)

else '0';

end Behavioral;

Experimentation

Fravel 4

Once I had the VHDL written and compiling correctly, it was time to move on to the test

bench to start simulating. I wanted to create a test bench to run a simulation that would show all

the functionality of the ALU in a short amount of time. I initialized the selector at “00” to start

with addition. I did this before assigning values to a and b to show that the computer is correctly

adding whenever I introduce the inputs. From here I show two more adds, then move the selector

to “01” and show 4 examples of subtraction. With both of these I included one example of

overflow to show its functionality. After that, I showed the AND and OR logic for a set of inputs.

Below is the test bench for the ALU.

-— Stimulus process

drive :
begin

3

wait

a

b

wait

wait
s
wait

wait
3
wait
3
wait

process

<= "Q0";

for tick:;

<= "0000000011111111"™;
<= "0000111100001111";
for tick:

<= "10111 1 11111";
<= "1011100100000000"
for tick:;

<= "0000000011111111"™;
<= "0000000011111111"™;
for tick:;

<= "01";

for tick:;

<= "0000000011111111";
<= "0000111100001111"™;
for tick:

<= "1011100100011111"™;
<= "1011100100000000";
for tick:

<= "00 1111311311311";

for tick:;

<= "0011001111001100";
<= "1010001111000011";
for tick:
<= "10";
for tick:;
<= "11";

for tick:;

end process;

END;

Fravel 5

Results

Below are the first 50 ns of results from the test bench.

» B afs0) 0000000000000000 1 00000000P0000000 00000000/11111111 10111001P0011111
» B4 bi5:0] 0000000000000000 1 00000000P0000000 00001111p0001111 10111001P0000000
» B S0 00 1 ;
» B8 150 0000000000000000 1 00000000 00000001[11111110 00000000DP0000000
“ur.x cout
R R

1"}

a0
Ug gt

10

L overflow

Both a and b are initially set to “0000000000000000” with s set to “00” to represent addition. Its
fairly easy to follow the diagram and see the resulting output waveforms change each time the
inputs change. In this section, there are 4 examples of addition showing an example for It, gt, and

eq as well as one with overflow. Below are the results for subtraction.

65 ns

S 55ns S s
» B2 afis:0] 0000000011111111 | 10111001p0011111 00000000 1111111 01111001100
» B bpis0) 0000000011111111 00000000111} 1111 10111001 11000011
» B4 sio) 01 __ _
2 riis0 = 0000000 " tiioooiiiioooo Y

L cout 0

1111000111110000 00000000p0011111 DODOUDOOODOUDOO 10010000D0001001
—

"N

1 ot

0
1% eq 1
0
1 overflow 0

B
IIII\IH

—

—

-_—

o —— -—
== I 1
I e m— I
I R E— I

Here I show another 4 examples, one for each of the different cases the ALU can handle. The
final example shows overflow with subtraction, which occurs when two numbers of different
sign are subtracted and the result is not correct. The final waveform shows the AND and OR

logic, represented by “10” and “11” on the selector, s, respectively. The output here is just the

combinational logic output of the two inputs.

D
Y
3
@
D
3

» B2 ais0) 0011001111001100

» B o150 1010001111000011

» B o) 10

> XD
L’,‘. cout
W

0110 1111001100
[~ iomopiiriono

1=}
1=}
=
oy
oy
jord
1=}
1=}
1=}
1=}
1=}

0

1 eq
-‘J} gt
.“,u overflow

1=}
a
2
@
@

Fravel 6

Conclusion

As far as [know, the 16 bit ALU I designed works for all cases needed for our purposes.
There are no known issues with my design, the most difficult part was figuring out the correct
logic for calculating overflow with signed addition. This lab was also good in helping me figure
out better ways of organizing my test bench files to generate waveform diagrams that are easier
to follow and show more functionality in less space. This also gave me more experience with
working with signed addition/subtraction and the things you have to take into account (e.g.

concatenating a ‘0’ to each input when performing operations to account for the cout).

