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Introduction 

 The objective for this lab is to complete the task we set out from the beginning and put all 

the pieces together for our final Single-Cycle CPU. Our CPU by the end of the lab has what it 

needs to perform any of the instructions listed on the lab ISA for the instruction set we’re using. 

(apdx. Figure 7) 

 The lab is broken up into four parts to complete what we already have set up. Part one is 

to add an instruction memory module as well as a program counter to allow the datapath to 

accept a file full of instructions and run through each instruction over a set period of time. Part 

two involves adding functionality to the ALU to perform set-on-less-than (SLT) operations. Part 

three has us add a few new modules to support the last of our two instructions, branch-on-not-

equal (BNE), allowing the program counter (PC) to go to another instruction based on a binary 

operation. Finally, part four has us add the final pieces to the CPU to support the jump function, 

which allows the PC to go to advance to a specified instruction location. 

Approach 

 Part one of the lab is fairly simple as far as implementation goes. We’re using the exact 

same memory module we were given for our data memory, so everything is fairly familiar. 

Below is an illustration of the datapath for part one; a few things are omitted for simplicities sake 

(i.e. control 

entity). 
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Along with the instruction memory module, we want to add a program counter. This comes in 

the form of a 16-bit register, not to be confused with the 16-bit register-file we use for our 16 

registers in the datapath. This register, connected to another entity which adds +2 to its output 

and feeds it back into its input. What this does is feeds the address +2 after each cycle to the 

instruction memory, creating a incrementing list of executable instructions. Another question we 

have when connecting these are the signals for the write_en, read_en, data_in, and mem_dump 

on the instruction memory. Since the instruction memory is always reading, we want read_en := 

‘1’, write_en := ‘0’, and mem_dump := ‘0.’ For data_in, we just put x”0000” as it doesn’t really 

have much of an impact on the functionality. VHDL code for all the updated entities are attached.  

 Part two of the lab had us add some functionality to the datapath in the form of the SLT 

(set-on-less-than) instruction. SLT, opcode := x”7”, allows us to compare two registers and set a 

destination register (Rd) to either x”0000” or x”0001” based on whether Rs < Rt. The way this 

function is actually implemented in the circuit is through an additional signal added to the ALU 

implementation, and changing the alu_sel signal from a 2-bit signal to a 3-bit signal since we 

now have more than four ALU operations. Now that the alu_sel signal is 3-bits, we’re able to 

differentiate more instructions. We already know how to do less than, greater than, and equal to 

logic within the ALU, so we just use that and assign the new signal, slr_r, to the result of the less-

than logic and set that signal equal to the result whenever alu_sel := “100.” With these changes to 

the ALU and making sure to change the aluop control signal in the system entity to 3-bits, the 

circuit was now able to take in SLT instructions.  VHDL for everything discussed is attached.  

 Part three of the lab had us implement the second to last function on our ISA, branch-on-

not-equal (BNE). This step was a little more involved than part two in that we are actually 
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adding more entities to the datapath again. BNE is described in the ISA as follows; with 

opcode := x”9” if Rs != Rt then the PC := PC + 2 + address, with the address being derived from 

the 4-bit offset in the instruction. This allows the program to jump to another instruction, rather 

than the next one, based on a binary operation. The way the datapath is set up and how the logic 

is formed, this offset actually specifies the number of instructions you want to branch and the 

datapath converts that into an actual address. Below is the datapath to support BNE instructions. 

As can be seen above, to support BNE there is a little more involved than you’d first think. The 

first step in calculating the branch comes from the immediate value in the last 4-bits, sign 

extended to 16-bits and shifted left by 1. The reason it shifts is every instruction is 2-byte 

addresses, so you want to multiply the number of instructions you want to skip by two to get the 

actual address you’re looking for. Once you have this value, it is added to the current PC + 2 and 

sent through a mux. This mux only puts this value through if the new branch signal specified in 

the control entity := ‘1’ and the inverted eq logic (neq) on the ALU := ‘1.’ The logic for equal-to 
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already exists in the ALU, all that was needed to do was to created another output on the ALU 

and set it to that logic, and then invert that in the system entity. The reason these signals are 

ANDed together is because to specify a branch, you need both branch := ‘1’ and Rs != Rt or 

neq := ‘1.’ Otherwise, the mux sends through the original PC + 2 signal and the datapath works 

as usual. All the VHDL for the described logic is attached.  

 The final step in completing our single-cycle CPU is to add jump instruction 

functionality. This step also involves adding a couple new pieces to our datapath to support the 

final instruction. The jump instruction has opcode := “B” and the rest of its 12-bits are used to 

specify the address for the jump. First of all, a new control signal, “jump” is added for specifying 

a jump instruction. This jump signal controls a mux that specifies whether or not the PC gets 

modified by the output of the previous mux, or by the new jump mux. The address is calculating 

by bit-slicing already existing signals; 15:13 comes from the PC + 2 signal, so we are in the 

correct address range, and 11:0 from the J instruction are added together along with an appended 

‘0’ since all addresses end in ‘0.’ Below is the circuit described above.  
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As stated before, the jump signal controlling the mux := ‘1’ whenever opcode := “B.” This 

completes our implementation of the single-cycle CPU; VHDL for everything described is 

attached.  

Experimentation 

 There were a lot of different errors and problems that came up in the implementation of 

these new functions. Part one was relatively straight forward in adding the program counter and 

instruction memory. The instruction memory is the exact same entity as our data memory and we 

had already designed the 16-bit register for the PC. The experimentation came in with how the 

input signals needed to be set on the instruction memory as well as how to implement the adder 

and correctly load in the set of instructions. I began with creating a new adder entity but thought 

this was overly complicating the signals in my system entity so I just ended up creating a 

constant 16-bit signal in the system entity := x”0002” and add that to the output of the PC for its 

input. I was having issues loading in the instruction file with the extension “.txt” but was able to 

get it to work after changing it to “.mem.” Since part two didn’t require adding any extra entities, 

this was the easiest step as all it required was adding simple functionality to the ALU. The test 

bench runs through the same set of instructions as our Lab 4, along with a new set of SLT 

instructions.  

 Part three and four required a little more experimentation to get working properly. 

Implementing the shift_left entity wasn’t too hard to make sure it worked, just needed to load it 

in the situation and observe its output. The addition for the branch address is also done i the 

system entity, similar to how the PC addition is handled. The AND logic, as well as the invert 

logic for the eq signal for the branch mux selector is all also done in the system entity. The mux 
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being used is the same 2-to-1 16-bit mux that is used in two other places in the datapath. Part 

four was very easy since all it used was another 2-to-1 mux which is controlled by a new stand-

alone signal in the control entity and some simple bit-slicing to determine the input of the mux. 

The tricky part about calculating the address is getting used to how it is formatted in the 

instruction and targeting the address you want properly. 

Results 

 Part one results use the same exact instruction set as was used in the previous lab. We 

start with 2 ADDi instructions, 2 SW’s, another ADDi, 2 LW’s, and to test part two of the lab we 

add 2 SLT operations.  

(apdx. Figure 4) 

I have attached the instruction_in file and written the translations of each instruction alongside. 

This test bench shows that all the previous operations, along with the new SLT operation on the 

simulation diagram shown in the figure.  

(apdx. Figure 1) 

With this simulation, at the end of the SLT instructions we expect R[3] := x”0000” and  

R[9] := x”0001” along with all the previous memory and register results.  

 Part three had us add the BNE instruction. To properly test this, I kept all the previous 

instructions from the last test and put a blank instruction to set apart the new ones. After the 

blank instruction, I added a BNE that checks whether 0 = 1, if not it branches 2 instructions. The 

next two instructions are blank with the third next instruction being an add. So, we should see in 

the waveform diagram all the previous instructions, a blank instruction, a branch, and an add.  

(apdx. Figure 2 & 5) 
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 Finally, part four of the lab we added the jump instruction. Testing this was a little 

trickier, but with some experimentation I got it to work as expected. I kept all the previous 

instructions, as before, and instead of the two blank instruction after the branch I put two 

instructions that will each add 1 to R[2]. And after the branch add, I have a jump instruction go 

to those two add instructions.  

(apdx. Figure 3 & 6) 

This in essence creates a loop after the branch that, after each jump, + 2 is added to R[2] but R[5] 

always stays the same. This loop goes until the test bench finishes running its specified time. 

This completes the testing of our single-cycle CPU.  

Conclusions 

 As shown in the results and the VHDL attached to the report, the design works as 

intended and I expect any other combination of our ISA instruction set would work properly as 

well. This lab did a really good job at bringing all the pieces together and showing how simple it 

can be to add on to your design if it is properly modular and has good readability. There are no 

known problems with my current CPU. 


