
Zack Fravel

010646947

Lab 1 : M 4:10 - 5:55 PM

Lab 4 - Simple Datapath

3/7/16

Introduction

 The objective of lab 4 was to finally start to put the pieces we have been building

together to form a simple datapath, which is the basis for our simple CPU we wish to implement.

To do this, we will use the previous ALU and Register file components along with a few more

we developed in this lab and others given to us. This was a two part lab, the first part allowing

for ADD, ADDi, SUB, SUBi, AND, and OR operations to be performed. In the second part, we

added functionality for LW and SW (load word and store word) operations. We were given a test

bench and memory file to test our final design.

Approach

 Since this was a two week lab, we had two main objectives to complete by the end. The

first part was to add our control and sign extend units to allow the first six instruction sets to be

able to be implemented. These are our basic arithmetic instructions, along with their immediate

counterparts, as well as AND and OR logical. The sign extend unit allows the datapath to take in

a four-bit signed number (instruction bits 3:0 or “offset”) and “extend” it into a sixteen-bit signed

number. For example, “0011” would become “0000000000000011” and “1000” would become

“1111111111111000.” This allows us to ADDi and SUBi. The design for this unit is fairly simple,

basically we just took the most significant bit and replicated it twelve times and added it before

the rest of the number. The VHDL for my sign_extend design is attached on the back of this

report.

 Another main part of this lab was adding a control unit to our datapath. The control unit

takes in the opcode for our design ISA, which is instruction bits 15:12. This four bit opcode

allows the control unit to, as the name implies, control the datapath to math the specified

functionality. Our control unit is comprised of an opcode input and the rest outputs, mostly

std_logic and a single std_logic_vector(1 downto 0). These outputs are the control signals for the

required mux’s in our design, as well as determine the register load, memory read/write, and of

course the function of the ALU. Below is a diagram of the datapath which more clearly shows

how the control unit works and changes the datapath. The VHDL is attached to the back. The

way it works is basically we created case statements for the different opcode possibilities we

want to account for and set the output signals to correctly match the datapath with the

instruction.

In order to accommodate load word and store word operations, the data memory unit was given

to us. The way the data memory works is it takes in memory from a file in the format of a 256

wide array of 8 bit numbers. The memory stores each 16 bit number we have in two different

“memory slots” so when we load or store a word we are accessing 2 of the 256 slots, allowing

for storage of 128 different 16 bit values. The memory unit also has a mem_dump functionality

that dumps the contents of the memory to a file.

 Finally, in order to put all this together we had to create a top-level entity named system

that is used to connect all of our different units together in the layout shown above using port

mapping. The process involved creating signals for all the different outputs that involved in the

circuit design so we are able to “wire” them up to each component as necessary. Creating signals

for these outputs also allows us to send certain information to multiple units at one time. The

system entity has a 16 bit instruction input, as well as clock and reset inputs, and finally the

mem_dump input. The VHDL for my system design is attached in the back. Once this was done,

we had a fully functional simple datapath that allows for ADD, ADDi, SUB, SUBi, AND, OR,

LW, and SW.

Experimentation

 The first part of the lab, getting the first six functions to work, was fairly straight forward

and didn’t require much debugging. The most confusing part of the lab was making sure I had

not created any duplicate signals or naming errors in connecting all the units correctly in the

system entity. The control unit was also a little tricky to get working initially. The main issue I

was running into was visualizing the datapath correctly for LW and SW operations. However,

after tracing through each instruction is became clear which signals needed to be set to what. The

main thing to get right is which path the mux’s are allowing and making sure the ALU is

performing immediate addition, because its calculating an address from an immediate value.

 Once I worked out all the errors that were giving me false positive results, I was able to

run the given test bench and show that the datapath works with the ISA provided as described in

the lab.  

Results

 The test bench given to us initializes the memory to all “11111111” and shows

functionality with ADDi, SW, and LW. The test bench adds immediate numbers in registers r3

and r4, stores r3 and r4 in memory slots M[0] and M[4] respectively, does another ADDi to r6,

and performs a LW on of r6 to r7 and r0 to r8. Finally, the test bench sets mem_dump to one and

prints the memory contents to a file. The input and output memory files are also attached to the

back. Below is the simulation waveform results for the test bench.

It can be seen that each time the alu_op signal changes the operation of the datapath changes as

well. This is determined by the opcode in the instruction set used by our control unit. Along with

each different instruction, if you take a look at the control waveforms you can see the mux and

ALU controllers change with each instruction.

Conclusion

 The test bench above shows that the simple datapath works as described in the original

lab. We have now implemented most of what we need for the ISA, only a few instruction types

remain to have a fully functional simple CPU. This lab was useful in showing how we are

actually putting all the pieces together and how to create an actual circuit in the design tools.

Along with this, the lab also exposed me to the use of case-statements for the control unit, which

is very useful for implementing an instruction set.  

VHDL

 

 

Memory Contents

00000101
00000000
11111111
11111111
00000010
00000000
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

goes on for 256 lines with “11111111”

