University of Arkansas — CSCE Department

Capstone | — Final Proposal - Fall 2017

WebDNA Project Proposal

Salvador Sanchez, Zack Fravel, David Darling, Jace McPherson, Jonathon Raney

Abstract - Zack

oxDNA is an extensible DNA simulation and analysis software used by DNA researchers from
various fields of study. While existing as a powerful tool for running DNA simulations, oxDNA
remains difficult to utilize for users without a computer science background. As a team, we want
to bring these tools to a wider pool of users by simplifying the simulation process and building
out a web-based user interface.

Along with the standard simulation data, we also hope to build in analysis and visualization tools
that share immediately useful information with the user. Our goal by the end of the projectis to
have made a significant contribution to the field of molecular self-assembly by enabling
researchers from different backgrounds to have access to these powerful DNA simulation tools.

1.0 Problem - Jace

oxDNA is currently clunky in its workflow. There are many isolated steps involved in the data
generation and simulation process. With so many distinct, advanced processes, including
compiling oxDNA, generating initial system state data using python scripts, converting the
output to JSON files for visualization purposes, and running scripts to perform analysis, the
simulation software is extremely inaccessible.

Even for advanced users, the entire simulation pipeline is bloated and inefficient. In many
cases, the stock analysis scripts (written in Python) do not provide enough functionality to cover
all the possible analysis cases. For advanced data generation and analysis, researchers are
required to write their own python scripts, which is an overly advanced process. The lack of
process unification and simplicity also takes a toll on this useful software’s accessibility.

2.0 Objective - Jace

The objective of this project is to wrap oxDNA functionality in a simplified user interface that is
accessible via the Internet. The problems mentioned in section 1.0 should ideally be solved by
the final product. In summary, the software must solve the overall issue: accessibility. A unified

portal to the oxDNA functionality, as well as easier and fully-functional analysis tools (provided
via built-in and user-defined analysis functions) will ensure a smooth user experience.

3.0 Background

3.1 Key Concepts - John, David

Undoubtedly, the most important technology this project will be working with is the oxDNA
software, a molecular dynamics and modeling program used to compute complex simulations of
nucleic acids. The software includes features for several different types of common simulations.
These include: molecular dynamics, Brownian dynamics, and Metropolis Monte Carlo.
Additionally, Lennard-Jones interactions, Kob-Andersen mixtures along with multiple patchy
particle models can be generated [1]. This rich feature set makes oxDNA very useful for
researchers looking to utilize computing power for predicting how molecular systems will interact
in a wide variety of scenarios.

In order to implement the required server functionality, Django Python in conjunction with a
PostgreSQL database will be used. Django is an open-source web-server framework for use
with Python [2]. This will serve as our APl and Job execution platform. For the frontend client,
we will be using Angular2, a renowned framework for developing websites using HTML, CSS,
and Typescript. It follows the Model-View-Template architecture with the goal of ease-of-use in
mind. Angular2 is widely supported and extensible via open source packages that are
downloadable and instantly available via the Node Package Manager (NPM). This flexibility will
allow easy conjunction with the prewritten 3D visualizer using 3js which will eventually be used
and updated to analyze simulation outputs. Our frontend will rely on the Django Server for all its
data requests (served via the API portion) and Job queuing (performed by the Job execution
portion).

oxDNA produces a trajectory file where all the relevant information to viewing DNA reaction
simulation images lies. This info is translated into a pdb or xyz file using a converter provided in
the “UTILS” directory. This file can be analyzed in VMD, a molecular visualization program for
displaying 3D representations of molecular systems [3], from xyz output format or by UCSF’s
Chimera from pdb format to produce useful visualizations. Chimera is developed by the
Resource for Biocomputing, Visualization, and Informatics at the University of California, San
Francisco and provides extensive interactive DNA visualization [4]. Complete documentation
and download is free of charge for noncommercial use. Some of its key features include but are
not limited to automatic identification of atom types, high-resolution images, molecular dynamics
trajectory playback (many formats), and distance and angle plots.

3.2 Related Work - David

The foundational research for DNA self-assembly systems was originally carried out by Erik
Winfree. Winfree developed a model for artificial, self-assembling systems called the Tile

Assembly Model which he introduced in his 1998 thesis [5]. This model could be split into two
versions, namely the abstract Tile Assembly Model and the kinetic Tile Assembly Model (aTAM
and kTAM respectively). Between the two versions of the model, the key differences lie in the
fact that the aTAM version generally ignores realistic errors and provides a more high-level
approach, while the KTAM version accounts for errors and provides means to analyze errors
that can happen in reality. Because of this accounting for errors, the kTAM model has been
used in actual lab experiments to predict the ways assemblies will form. Winfree’s research into
these types of models showed that the systems could be classified into the field of algorithmic
self-assembly. Different simulators have been developed using these models. Xgrow,
developed by Erik Winfree among others, actually implements both kKTAM and aTAM [6].
Another simulator, ISU TAS, similarly features both assembly models, but is more focused on
designing tile assemblies [7]. These softwares offer a more high-level simulation of
self-assembly systems when compared with the oxDNA software which makes use of its own
molecular dynamics model.

oxDNA itself was originally based around the research of T.E. Ouldridge, J.P.K. Doye, and A.A.
Louis, who introduced the coarse-grained DNA model [8]. oxDNA has since been expanded by
multiple research groups to be a framework for simulating and analyzing DNA and RNA.
However, oxDNA is not the only molecular dynamics simulation software currently available.
Another nucleic acid simulation software is Nanoscale Molecular Dynamics (NAMD), created by
researchers from the University of lllinois at Urbana-Champaign; This software features scalable
simulations that can utilize hundreds of processing cores in order to model massive molecular
systems [9]. Similar to oxDNA, in order to correctly utilize NAMD requires extensive technical
knowledge of the subject as well as a solid grasp of programming concepts. These
requirements are generally too demanding of researchers not from a computer science
background and causes unnecessary delays in getting simulations up and running. The
development of a user-friendly graphical interface to oxDNA should mitigate many of these
issues and attract more researchers to the software.

4.0 Design

4.1 Requirements and Design Goals - Jace

The culmination of the WebDNA software should accomplish the following:

e Provide the user with an interface for generating input data to a simulation environment.

e Allow users to control the execution parameters of a simulation. This includes, but is not
limited to: simulation type, initial seed, time steps, and temperature. These parameters
are based on the generic/simulation options

e Display simulation progress and provide a visualizer to view the current state of the
simulation.

e Provide a visualizer to render the system state at different points in time.

e Provide an analysis pipeline editor. Such an editor would allow users to perform
analyses on the output of the simulation, mapping and/or reducing system states to
other forms of analysis data. See below for more details.

e Provide a repository of community data-generation/analysis scripts. Users who have
uploaded custom scripts to the website for their personal purposes may share those
scripts with other users of the software, if they so desire. A convenient “Script Repo”
interface will be provided to the user, that lists scripts, with the option to view further
details about the script’s functionality, use cases, and more. Saved scripts can be used
in the user’s projects later.

One of the highlights of the aforementioned requirements is the analysis pipeline editor. This
serves as a solution to the cumbersome analysis process that DNA researchers undergo every
time they want to extract or calculate new information from simulation results. As mentioned in
section 1.0, current analysis solutions require manually writing python scripts to analyze
execution data. The analysis pipeline editor would give users the ability to visually pipe the raw
simulation output through a series of scripts such that they can quickly process simulations
meaningfully. See Figure 1 for an example of such a pipeline.

oxDNA Output

f . y
CountStructures CountStructures
hydrogen_bond holliday_junction
SerializeTo SerializeTo
JSON JSON
N Y J
Concatenate

Download ¥

Figure 1. Mockup of the analysis pipeline editor. The WebDNA pipeline editor
will provide default analysis nodes, as well as custom user-defined nodes.

The variety of analyses that may be performed is great, so it is conceivable that no visual editor
can cover all the cases researchers may need to execute. In this case, it is useful to provide a
“custom script” operator, where a researcher who is savvy with Python can manually perform a
step of the pipeline without having to rely on built-in tools. In addition to this, users will be able to
execute scripts submitted by other members of the community. Community scripts are
discussed in more detail later in section 4.2.2. The semantics of the custom script functionality

imply script sandboxing, since users’ custom scripts will be executed on our servers (which is a
blatant system vulnerability if not properly safeguarded).

The implementation of the remaining key requirements is highly dependent on the nature of web
application development. For example, all simulation configurations must be stored on a central
server, then served to the user so they can view and modify the configurations. This data flow is
also necessary for simulation visualizations, which are stored on the server and served to the
user, rather than performing intense computation on the user’s end. Section 4.2 covers the
implementation details for these broad features.

4.2 High Level Architecture - Salvador and Jace

As mentioned in section 4.1, the server and client will be performing distinct and separate tasks
in order to fulfill the end-user requirements and functionality. Essentially, the client is a “pretty
terminal” view on the server, granting a limited view of oxDNA execution configurations and
output data. The server is responsible for handling requests for custom executions, performing
standard parameterized oxDNA simulations, as well as executing utility scripts, both built-in and
custom-uploaded by users. To further explain, we will cover the server architecture in section
4.2.1 and the client architecture in section 4.2.2.

4.2.1 Server Architecture

The server needs to provide request endpoints to perform the following actions (the list is not

comprehensive, but highlights the main requests clients will make):

Create and save simulation configurations and parameters.

Fetch previously saved simulation configurations and parameters.

Begin the execution of an oxDNA simulation based on a previously saved configuration.

Fetch visualization data (i.e. system state data) for a currently executing or previously

executed oxDNA simulation.

5. Request the execution of previously made sandboxed python scripts on generated input
files.

6. Request the execution of premade/custom scripts on output data. The server should
provide a suite of generic analysis scripts that users can chain together to obtain
meaningful, customized results.

i

The server will be running with Python using Django. The Django server will be capable of
redirecting HTTP/REST requests to python functions that can perform the actions listed above.
Thus, Django comprises our RESTful web server for this project.

Data will be stored in a PostgreSQL database. The following data types will be implemented:
e User: Contains standard user data, such as email, name, password hash, salt for the
hash, etc. Users also possess Projects.

e Project: Contains simulation execution configuration data and references to current/past
Jobs (in the form of foreign key relationships from Jobs to Scripts). The Project table also
contains output analysis pipeline data in the form of a linked list of python Scripts.

e Job: Contains information about a currently executing or previously executed simulation
using the “oxDNA” executable. Jobs need to store much of the same information as a
Project.

e Script: Contains information about a script that should be scheduled for execution by the
server. Elements of this table need to know what Python script to execute, all
parameters to that script, what files to use as input, where to save output, and if there
are any subsequent Scripts that need executing. Scripts can be specified as either
private or public. Public scripts will appear in queries for community scripts (as
mentioned in the last design goal), whereas private scripts will stay unique to the user,
with the option to make them public at any time.

The following UML diagram represents the basic Schema for each of these main data types as
implemented in PostgreSQL.:

user

oid script
username .

» oid

email -
© . file_name

« first_name .
4 input_parameters
« last_name userd:id
output_parameters
§ password pre_script_id

created_on post_scrpt_id:id

post_script_id
ivat
user id:id Lo private
pre_s¢ript_idid| user id
project

fid

< user.id "data_file" contains the path to a
s hame project file containing information
1 data_file like data generation params, data

analysis pipeline, sequence file,
created_on 4 IeE o

proje%_id ;id

job
id

necessary scripts, and more.

% project_id
. start_time
finish_time

. output_folder

process_id

Figure 2. Database Schema in PostgreSQL. This UML diagram summarizes the
key tables and relations needed in the database.

As project development continues, more tables will need to be implemented, and the structures
of these tables may change from this original proposal, but these four tables represent the most
important aspects of the server’s data storage.

4.2.2 Client Architecture

Our front end solution to the oxDNA simulation software will contain, amongst other things, a
web page that allows the user to create Projects. Projects, from a user standpoint, allow users
to isolate distinct configurations and simulation results into manageable groups. Project
creation/execution involves three main components: the input configurator, the simulation
visualizer, and the output pipeline. We can expect to expedite the web development process by
using one of many Angular2 website templates that provide visually pleasing components and
layout functionality, such that we can focus more deeply on client functionality as opposed to
figuring out layout and visual issues.

With respect to the user experience and application layout, the project components will be split
into two distinct pages per project; one page will contain only the input configurator, while the
second page will contain both the simulation visualizer and the output pipeline. This is because
running a simulation is a big, time-consuming job, and should therefore be treated functionally
as a “job submission” rather than a quickly adjustable visualization. This is not to say that a
simulation could not be cancelled, adjusted, then restarted, but rather that a two-page layout
emphasizes the magnitude of the work being done.

The input configurator will be segmented into two categories: required and optional settings.
Required settings include the following:
1. Sequence Input: A module that will generate a file of character-based sequences of DNA
(or RNA) strands as the primary input or accepts a file/manual text input.
2. Generator Script: A module specifying the “generator”, i.e. a Python script that will
generate topology and configuration data from the sequence input (Required Setting 1).
3. Generic Options: A module that asks for generic options for the simulation. These are
based on the “Generic Options” listed in the oxDNA documentation [10].
4. Simulation Options: A module that asks for custom simulation-specific options. These
are based on the “Simulation Options” listed in the oxDNA documentation [10]. Some
options have prerequisites for other option states before the original option can be set.

Optional settings refer to any non-critical input-phase parameters that the user may want to
make. These “parameters” are limited to modifications of the generated topology and
configuration data created based on settings in the “Generator Script” setting (Required Setting
2):

1. Custom Scripts Module: This allows users to run pre-defined scripts (bundled with the
oxDNA software on the backend) or run their own sandboxed Python scripts on the
generated input data. Essentially, the user is allowed to transform the boilerplate
generated topology and configuration files with these pre-defined/custom scripts. These
scripts are stored with the user’s account and can be made public.

The settings and scripts modified in the input configurator are saved to their respective Project
associated with a user account. Figure 2 on the next page shows a mockup interface for the
input configurator.

o WebDNA - Configuration

ir webdna.uark.edu/configuration

Configuration

1e6
Required Configuration Settings ¥

103
Sequence File

250
Strand Generator

. john
Generic Parameters

334 K

0.005

Optional Pre-processing Scripts (0)

0.05

Select an Existing Script Upload Custom Script

RUN SIMULATION

Figure 3. A mockup of the input configurator, the first of two pages for all
projects.This does not represent the first page of the website, but rather the
configuration settings of an already-created project.

The next major component of a Project relates to the simulation visualizer. There are a couple
semantics relating to simulations for projects in WebDNA, listed below:
e Simulations are slow, so the visualizer should display simulations as they are being
calculated in near-real-time.
e All simulations — finished or not — should allow backward scrubbing to previous points in
the simulation, if they were configured to save the system state throughout the
simulation.

The visualizer will be based on the current implementation of a basic browser visualizer for
oxDNA output files. This visualizer was written using a simple Python HTTP server, so it will
need to be migrated to function with our Django HTML renderer. In addition, the current
visualizer uses Three.JS to render the DNA system state using WebGL.

The final component, the output pipeline, will allow the user to pipe system states through
user-defined analysis programs, which are created using a drag-and-drop style pipeline
interface. Figure 1 in section 4.1 gives a good visual for what this pipeline will look like. The
requirements for this pipeline are not entirely clear, as there are so many potential use cases.

Therefore, the pipeline will give access to the scripts in the oxDNA UTILS directory, as well as
allow users to upload custom scripts (which will be sandboxed as mentioned in section 4.1).

Beyond project/simulation execution, the user is able to browse a repository of public scripts
(visualized in a “Scripts” page on the main dashboard). that allow them to customize their
simulation experience using the volunteered work of other programmers. Users who are not as
tech-savvy can take advantage of public scripts to perform unique data-generation and analysis
operations. All scripts uploaded by the user are private by default, but the user can opt to make
these scripts public via a checkbox on the “Scripts” page next to each script. Python scripts
uploaded by the user should include metadata in comments that the server will then parse to
give the script more appeal to other users. For instance, a script in the repository named
“generated_strands_23.py” with no other information does not appeal to users and will not get
used. On the other hand, a script with the name “Weighted Strand Generator” with a
multi-paragraph description describing the use cases, input/output parameters, and usage
examples will have much more curb appeal, and give users a clear idea of what they are
running.

4.3 Risks - Salvador

Risk Risk Reduction

Learning curve for the Creating an easily accessible help page about a nearly

Custom Scripts Module intuitive scripting language.

Unmanageable codebases Develop a framework and organization for source code
beforehand, as well as an agreement on a rigorous
style guide.

File upload security risk Prescreening of all files.

4.4 Tasks and Schedule - Zack, Salvador, Jace, David

Below we have listed semi-detailed tasks to be completed next semester. These tasks are
divided into two types: Server and Frontend. We initially wrote these tasks in a Trello board to
keep ourselves organized, and have translated the tasks and their descriptions to this proposal
document. Although tasks are sorted by due date, many of them can be completed
concurrently. Assuming we can complete tasks by the listed due date, we will complete the
design goals we have laid out in section 4.

Server Tasks

Task and Description

Member(s)

Due Date (2018)

Setup Server Hosting

We will need to set up server hosting, most likely
through the school servers, but it's also possible
we use some 3rd party hosting provider like
Heroku or AWS.

Jace

January 26

Initialize Database Schema on Hosted
PostgreSQL Database

The UML for the database is shown in Figure 2 of
section 4.2.1. The scripts have already been
created, they will just need to be executed on the
new server environment.

David

January 26

Endpoint: POST User Authentication

Users should be authenticated by providing a
username||email and password combination to a
POST endpoint, then should receive a JSON Web
Token (JWT) if authentication passed. This token
will be used to approve all further requests to the
API from that user.

Password hashing for storage and retrieval to the
database will be handled by the PostgreSQL
package “pgcrypt”, using their implementation of
bcrypt. More information for setting this up can be
found here.

Salvador

January 29

Endpoint: GET Projects
This endpoint should return all of the user’s
project’s top-level information for display on their
project dashboard. Each object should only
contain simple information, such as the following:
{

"id": ..,

"name": ...,

"created on": ...,

"job running":

}

Jonathon

January 29

Endpoint: GET Project Configuration Data
The server needs to return the Project
configuration data for a single project by project

Zack

February 2

https://www.meetspaceapp.com/2016/04/12/passwords-postgresql-pgcrypto.html

ID.

This GET request should essentially serve the
stored project configuration JSON data in the body
of the request's response. The format for this has
not yet been determined, as there are many
moving pieces.

This will probably happen in 2 steps:
1. Basic project configuration data for minimal

operation of oxDNA
2. Add custom scripting options

Endpoint: PUT Project Configuration Data
This endpoint needs to accept various files related
to simulation configuration. The frontend will be
able to upload files to our server according to the
type of file it is, according to the following types:

Sequence file (labelled strands)

External forces file

Sequence Dependent Parameters

The server will accept the uploads of these files
and store them in the following fashion in some
data directory:

/data/{user id}/{project id}/{file t
ype} .dat

This file path should be saved in the Projects data
file, which will be stored as follows:
/data/{user_id}/{project_id}.json

Project Configuration JSON Example:
{
"sequence file":
"/data/{user id}/{project id}/sequen
ce.txt",

}

Jace

February 7

Endpoint: POST Specify Simulation
Generation Scripts

We will have a separate endpoint that allows the
user to modify the project’s datafile to specify a
build-in or custom data generation script. This
should only need to accept a single argument in

David

February 7

the JSON body.

URL: POST

http://{webdna url}.{domain}/apivl/g
eneration script/{project id}
Response Body:

{

" A

"Generate script id":

}

Endpoint: POST Specify Analysis Pipeline
The format of the Analysis pipeline request needs
to be specified still. To begin with, we can
represent the pipeline as a directed, hierarchical
graph of analysis nodes. More specifically, a node
of the pipeline can be represented as follows:

/* example analysis node */
{
"node id": /* e.g. 1 */,
"input node id": /* e.g. 0 */
"script": /* either generic or
custom file path to python script
x/,
"parameters": [... 1,
"name": /* any name */

}

An analysis pipeline would simply be a list of
distinct nodes:
{
"pipeline": [
{ /* analysis node */ 1},
{ /* analysis node */ },

}

Jonathon

February 14

Implement File Generation

The files “sequence.txt”, “external_forces.txt”, and
“sequence_dependent _parameters.ixt” all need to
be generated by the server using parameters

specified on the client by the input modules.

Zack

February 16

Script Checking for Script Upload
Upon receiving, the upload of a custom script, we
will run security scans. If the user has opted to

Jace

February 28

make their script publicly available, the python file
will be scanned for documentation and metadata
(things such as script name, version, description,
parameter types, etc.) to make for more
descriptive community scripts.

Execute oxDNA Simulation from Project
Data

The user should be able to submit a Job for
queuing to the server, which is initialized using
only the desired project_id. An instance of oxDNA
will be executed according to the parameters
specified in the Project corresponding to the
supplied project_id.

David, Jace

March 16

Client Tasks

Task and Description

Member(s)

Due Date (2018)

Login/Registration Page

Login: Design a clean and simple login page
which allows users to input usernames and
passwords with clear input elements for each field,
along with a submit button which sends the
appropriate login request to the server.

Registration: A register button will change the
page’s form to provide elements for entering
necessary registration information (i.e. first name,
last name, username, password). Appropriate
requests will be made to the server once the form
submit button has been clicked.

Zack

January 22

Project Management Page

Project List: Design a well organized list of
projects associated with the currently signed-in
account. Projects listed on this page will have
been created previously by the user.

Project Options: Each project should provide
several options when clicked: "Visit Project Page",
"Delete Project", and "Download Options". "Visit
Project" should take the user to the selected
project's specific configuration page. "Delete
Project" will provide a secondary popup box

Jace, Salvador

January 30

asking the user to confirm a projects deletion from
their account. "Download Options" will open a
small drop-down list of different files pertaining to
the project that can be downloaded including
project configurations and simulation outputs.

Configuration Page

Allows the user to configure a project for
simulation. This page will end up looking much like
the configuration page shown in Figure 3.

Zack

February 7

Output File Visualizer

This will be based off the current Three.JS
visualizer, as mentioned in section 4. We will be
making both aesthetic and functional changes to
the Visualizer, including:

e Allowing users to toggle automatic refresh
of the scene (if the project is configured to
output data for every step).

e Allowing users to download the raw data of
the configuration (this will already have
been loaded on the user’'s computer, since
that raw data was needed to populate the
visualizer).

Salvador, Zack

March 9

Output Pipeline Editor

This is tricky, but we need to give the user a visual
way to edit an analysis pipeline. Essentially they
need to be able to generate a pipeline with the
same visual style as shown in Figure 1.

Salvador, Jace

March 23

Custom Script Upload Manager

This will be a simple page that will be included in
the “Scripts” page of the Dashboard, with the
option to upload python scripts generated by a
researcher. Upon upload, it will be scanned for
security and for our specifications for it to be
added to the community’s scripts (if they choose
to make their script public).

David, Zack,
Jonathon

March 30

Dashboard (Integration of All Pages)

The Dashboard needs to be the central location
for all project management and script
management. The user will have three main tabs
in a sidebar: Projects, Scripts, and
Profile/Settings.

Projects will list the users projects and show the

All members

April 6

Project Management Page.

Scripts will show the user’s private scripts, as well
as giving them the ability to search public
community scripts and add those to their account.
Profile/Settings will give the user basic control
over their profile, such as changing their name,
email, username, and password.

Documentation All members April 13
Final documentation will need to be written in
detail to cover all client functionality for end users.
The documentation must be accessible for users
without any sort of computer science background
so that the majority of researchers are able to get
up and running quickly.

4.5 Deliverables — Salvador and Zack

Design Document

O

Outline front end functionality, database schema, and scope of analysis

API/Job-running Server

O

Python/Django

Website

O

Angular2 framework and Base Template.

Data Analysis

O

o

O

Output documents
Work in existing Python scripts into front end analysis
Sandboxing of custom data analysis python scripts

Visualization tools

O

o

Javascript
Chimera

Final Documentation

o

Provide a detailed document meant to be read by a non-computer scientist that
provides instruction on the use of the WebDNA front end for oxDNA simulations.

5.0 Use Cases - Salvador

Front End

Y

Login/Registration

Y

Project

Y

Researcher

Primary Actors

5.1 Login/Registration

A 4

Management Back End
Configuration
Database
Simulation

Visualization

Y

Output
Fipeline
Editor

Chimera
or

HTMoL

Y

Custom
Script
Upload

Secondary Actors

h

Output
File

Visualizer

Use Case Login/Registration
Author Zack and Jonathon
Primary Actor Researcher

Goal in context

For the Researcher to sign in or sign up

Preconditions

Database setup and GUI using Angular

Trigger

Upon first visiting page

Scenario

1. Researcher: Heads to URL of website

Exceptions

1. User does not exist in sign in
2. Account name already exists in sign up

Priority

Low

Channel to Actor

GUI

Usage Frequency

At each session use

Secondary Actors

Database

Channels to secondary actors

Database: Network

Open Issues

Security against password guessing and bots

5.2 Project Management

Use Case Project Management
Author Jonathon and Salvador
Primary Actor Researcher

Goal in context

Help manage (edit and organize) multiple
project simulations with essentially a file
system with folders

Preconditions

Database setup

Trigger Upon first logging in or being chosen from
dashboard

Scenario 1. Researcher: logs in
2. Database: retrieves all projects of the
logged in user

Exceptions 1. If user tries to delete a project, then the
user will be asked by a pop-up if they actually
want to do so

Priority Medium

Channel to Actor GUI

Usage Frequency

Any time the user logs in or goes clicks back

through the dashboard

Secondary Actors

Database

Channels to secondary actors

Database: Network

Open Issues

Ability to make folders for better organization

5.3 Configuration

Use Case Configuration
Author Zack and Salvador
Primary Actor Researcher

Goal in context

Generate an Input file for the execution of the
simulator and facilitate changes (extra files)
to the working directory within the project
manager

Preconditions

Simulation software (0xDNA) be implemented
and routed

Trigger User chooses a project in the project
manager
Scenario 1. Researcher: logs in
2. Database: retrieves projects
3. Researcher: chooses a project
Exceptions 1. Insufficient information to run simulation
2. Input variables are invalid
Priority High
Channel to Actor GUI

Usage Frequency

Each time a project is chosen within a user
account

Secondary Actors

Database, oxDNA

Channels to secondary actors

Database: Network
oxDNA: Network

Open Issues

Validation of sufficient and valid inputs

5.4 Simulation Visualization

Use Case Simulation Visualization
Author Jace and Zack
Primary Actor Researcher

Goal in context

Have visualization software embedded into
the webpage to visualize the simulation

Preconditions

Implementation and routing of visualization
software and having output files to work with
from execution of oxDNA

Trigger

When the pending execution screen is
finished, the output files from oxDNA will give
the data necessary for the visualization
software

Scenario

1. Researcher: logs in

2. Database: retrieves projects

3. Researcher: chooses project

4. Database: sets up files for configuration
and execution

5. Researcher: configures and executes their
project

6. oxDNA, Visualization: outputs the
visualization of the executed configuration

Exceptions

User tries illegal operations of the
visualization software

Priority

High

Channel to Actor

GUI

Usage Frequency

After each execution of a project

Secondary Actors

Visualization, oxDNA

Channels to secondary actors

Visualization: Network
oxDNA: Network

Open Issues

Having JSON files of the iterated steps of the
simulation executed

5.5 Output Pipeline Editor

Use Case Output Pipeline Editor
Author Salvador and David
Primary Actor Researcher

Goal in context

To create a drag and drop output analysis
flow chart that will treat each block as a
script. The script functioning on parameters
from the flow going in and giving its output to
the flow going out.

Preconditions

Pre-existing python scripts needed, along
with executed simulation output to do
analysis on

Trigger

Upon finishing simulation execution

Scenario

1. Researcher: logs in

2. Database: retrieves projects

3. Researcher: chooses project

4. Database: sets up files for configuration
and execution

5. Researcher: configures and executes their
project

6. oxDNA, Visualization: outputs the
visualization of the executed configuration
7. Researcher: clicks on the icon to perform
the output analysis from the dashboard

Exceptions

Invalid placements of the scripts in the flow
chart

Priority

High

Channel to Actor

GUl

Usage Frequency

After each execution of the simulation if the
user decides to click on the icon on the
dashboard

Secondary Actors

Database, oxDNA

Channels to secondary actors

Database: Network
oxDNA: Network

Open Issues

1. How to handle aggregate of python scripts
2. How to handle all the different outputs
aggregated (make many flow charts?)

5.6 Custom Script Upload

Use Case Custom Script Upload
Author Jace and David
Primary Actor Researcher

Goal in context

To upload the user’s custom output analysis
scripts for either their use only or to share
with anyone with an account

Preconditions

Database setup

Trigger Selected from dashboard

Scenario 1. Researcher: logs in
2. Database: retrieves projects
3. Researcher: clicks on an icon on the
dashboard to go to the custom script upload
page

Exceptions 1. The script is a security risk
2. The script doesn’t follow our requirements
(such as a description) if the user chooses to
make the script public

Priority Medium

Channel to Actor GUI

Usage Frequency

Anytime user selects the script upload icon
on the dashboard

Secondary Actors

Database

Channels to secondary actors

Database: Network

Open Issues

1. How many requirements
2. The scope of the security scan

5.7 Output File Visualizer

Use Case Output File Visualizer
Author David and Zack
Primary Actor Researcher

Goal in context

Being able to take the output from the output
analysis flow diagram that was executed, and
display the text files and terminal prints given
from it

Preconditions

Implementation of the output analysis flow
chart

Trigger

Execution of the configuration of a project
and then executing a valid output analysis
flow diagram

Scenario

1. Researcher: logs in

2. Database: retrieves projects

3. Researcher: chooses project

4. Database: sets up files for configuration
and execution

5. Researcher: configures and executes their
project

6. oxDNA, Visualization: outputs the
visualization of the executed configuration

7. Researcher: clicks on the icon to perform
the output analysis from the dashboard

8. Researcher: executes output analysis flow
diagram

9. Server: displays output of flow diagram

Exceptions

User cannot interact with display

Priority

High

Channel to Actor

GUI

Usage Frequency Each time a user executes a flow diagram
after the execution of a project

Secondary Actors Database, Server

Channels to secondary actors Database: Network
Server: Network

Open Issues 1. Possibly taking in multiple diagrams at
once
2. Organization of its display

6.0 Key Personnel

Dr. Matthew Patitz — Dr. Patitz performs research in self-assembling systems, and has
published a number of papers related to theory, software, and experimental aspects of
self-assembling systems [11].

Salvador Sanchez — Sanchez is a senior Computer Science and Mathematics major in the
Computer Science and Computer Engineering Department at the University of Arkansas. He
has completed Programming Paradigms, Software Engineering, and Operating Systems. Front
end development with Zabbix monitoring legacy PHP code, making server metric reporting
pages for a Cerner systems engineering team.

Zack Fravel — Fravel is a senior Computer Engineering major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He has completed coursework
in Embedded Systems, VLSI Synthesis, Low Power Digital System Design, Programming
Paradigms, as well as independent study of Abnormal & Evolutionary Psychology.

David Darling - Darling is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He has completed Software
Engineering and Programming Paradigms. He completed internships at Entergy Arkansas
creating automated tools to streamline the design process for new electrical transmission
structures.

Jace McPherson - McPherson is a senior Computer Science major in the Computer Science
and Computer Engineering Department at the University of Arkansas. He has worked software
development/engineering internships at Metova and Google, as well as researched and
developed software to control multiple 3D printer robots to perform a single print cooperatively.

Jonathon Raney - Raney is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He has completed
Programming Paradigms and Operating Systems. Currently undergoing further study in
Genetics and Bioinformatics courses.

6.1 Facilities and Equipment - Zack

There isn't much hardware that we need for our purposes currently. Down the road it would be
useful to own a few machines with powerful GPUs to perform quicker simulations. For the
frontend web client, we can enormously speed up the process of our Angular2 website by
purchasing a licensed template (usually around $30-$40, see [12]). This template would give us
great visual components with immediate functionality and portability, meaning we wouldn’t have
to spend time nit-picking about component visuals and focus more on overall layout needs for
the site. For such a small price, it justifies the efficiency gains.

7.0 References

[1] oxDNA Features, https://dna.physics.ox.ac.uk/index.php/Features

[2] Django Documentation, https://docs.djangoproject.com/en/1.11/

[3] VMD, http://www.ks.uiuc.edu/Research/vmd/

[4] UCSF Chimera, https://www.cgl.ucsf.edu/chimera/

[5] Self Assembly, http://self-assembly.net/wiki/index.php?title=Main_Page

[6] Xgrow, http://self-assembly.net/wiki/index.php?title=Xgrow

[7] ISU TAS, http://self-assembly.net/wiki/index.php?title=ISU_TAS

[8] oxDNA Documentation, https://dna.physics.ox.ac.uk/index.php/Documentation

[9] NAMD, http://www.ks.uiuc.edu/Research/namd/

[10] oxDNA Main Page, https://dna.physics.ox.ac.uk/index.php/Main_Page

[11] UofA Directory, https://csce.uark.edu/directory/index/uid/patitz/name/Matthew-Patitz/

[12] Creative Tim, Light Bootstrap Dashboard Angular 2,
https://www.creative-tim.com/product/light-bootstrap-dashboard-angular2

