

Premise: Here's the Problem...

- oxDNA is a widely used DNA simulation software.
- It's clunky, and very inaccessible to most DNA researchers.
- Analysis of the oxDNA output is the main time-consumer for DNA related research.

just generated 'generated.dat' and 'generated.top

- Because it lacks a UI, file management is also an issue. oxDNA produces many files and it's up to the user to figure out how to organize them.
- Difficult visualization of simulation results

Objective: How can we fix this?

- We plan to wrap oxDNA functionality with a website
- All input data, simulation visualization, and data analysis should take place in our controlled environment
- Guide the configuration experience with a clean, sensible UI
- Allow advanced users to download their results and perform offline analysis, if necessary.

Technologies

Server

Django Python Server

- Listens for HTTPS requests
- Serves web pages using the Django HTML renderer

PostgreSQL DBMS

Widely used SQL extension

Client

Angular2 Renderer

- Framework based on Javascript for rapid development of Uls.
- Adapts and extends HTML to present fully dynamic content.

Three.JS

 3D Renderer for browsers (using WebGL) three.js

Project Schedule

Tasks have been divided into two main sections to be worked on concurrently

Server			
•	Setup of hosting method	January 26	
•	Initialization of database schema on hosted PSQL platform	January 26	
•	 POST user authentication GET projects GET project configuration data PUT project configuration data POST specify simulation generation scripts POST specify analysis pipeline 	February 14	
•	Implementation of file generation	February 16	
•	Script uploading and checking	February 28	
•	Execute simulation from project data	March 16	

Client

•	Login/Registration page	January 22
•	Project management page	January 30
•	Configuration page	February 7
•	Output file visualizer	March 9
•	Output pipeline editor	March 23
•	Custom script manager	March 30
•	Dashboard (integration of pages)	April 6

Client: Simulation Configuration

Required Settings

- Normally set up with Python scripts in a clunky workflow
- Now, reduced to simple series of steps with same functionality

Optional Settings

 Allows users to run builtin and/or custom scripts on their input

Client: Simulation Visualization

Current Visualizer

- Simple nanoparticle visualizer already implemented
- We can use the current visualizer as a base for our more flexible oxDNA simulation visualizer.

Added Features

 Scrubbing through simulation over time

Client: Output Pipeline Editor

Current Analysis Pipeline

 NONE! Researchers have to write their own analysis code to extract meaningful data from simulations

Our Analysis Solution

- Create a drag-and-drop style interface for users to pipe their simulation data through a series of analysis steps
- Allow downloads of data at each of the steps, including the final output, for full customizability.

Client: Custom Script Manager

- The goal is to provide a simple way for users to upload and make use
 of their own locally-written python scripts for use within the pipeline
 editor.
- A remote file exchange protocol such as FTP will be used to allow users to directly upload files
- These files will be screened to ensure they meet server requirements and then made available to users

Server: Hosting and Database

 Server will be hosted on either UARK's Turing or a 3rd party platform such as AWS or Heroku

 The PSQL Database will be similarly hosted and will store data such as user information and script metadata

Server: URL Endpoints

- The server will rely on RESTful URL endpoints to provide functionality to clients.
- Endpoints will be defined to perform many different tasks such as authenticating users and specifying analysis pipeline information

Server: Executing Simulations

- The user will be able to submit a Job for queuing to the server
- The Job is initialized using only the desired project ID.
- An instance of oxDNA will be executed according to the parameters specified in the project corresponding to the supplied project ID.

Final Product

- By the end of the course, we hope to deliver a robust and extensible web server capable of launching highly customizable oxDNA simulations.
- 3D analysis tools and custom output scripts will offer useful and intuitive functionality for researchers.
- Using oxDNA will become much more streamlined and simplified