
Jace McPherson, Salvador Sanchez, Zack Fravel, 
David Darling, Jonathon Raney

November 6, 2017



Premise: Here’s the Problem…

• oxDNA is a widely used DNA simulation software.
• It’s clunky, and very inaccessible to most DNA researchers.
• Analysis of the oxDNA output is the main time-consumer for DNA 

related research.
•

•

Because it lacks a UI, file management is 
also an issue. oxDNA produces many files 
and it’s up to the user to figure out 
how to organize them.
Difficult visualization of simulation 
results



Objective: How can we fix this?

• We plan to wrap oxDNA functionality with a website
• All input data, simulation visualization, and data analysis should take 

place in our controlled environment
• Guide the configuration experience with a clean, sensible UI
• Allow advanced users to download their results and perform offline 

analysis, if necessary.





1. Provide simple user interface for generating input data to 
the oxDNA simulation environment.

2. Allow users to modify the execution parameters of the 
simulation

3. Provide a visualizer to show the DNA system state at 
different points in time.

4. Provide a visual analysis platform so that the user can 
easily perform analysis with no code experience necessary.

I promise, these will be clearer in a second…



Simulation Configuration
Required Settings
• Normally set up with 

Python scripts in a clunky 
workflow

• Now, reduced to simple 
series of steps with same 
functionality

Optional Settings
• Allows users to run built-

in and/or custom scripts 
on their input



Simulation Visualization
Current Visualizer
• Simple nanoparticle visualizer 

already implemented
• We can use the current 

visualizer as a base for our more 
flexible oxDNA simulation 
visualizer.

Added Features
• Scrubbing through simulation 

over time



Analysis Editor
Current Analysis Pipeline
• NONE! Researchers have to write their 

own analysis code to extract meaningful 
data from simulations

Our Analysis Solution
• Create a drag-and-drop style interface 

for users to pipe their simulation data 
through a series of analysis steps

• Allow downloads of data at each of the 
steps, including the final output, for full 
customizability.



Technologies

Server Client

Django Python Server 
• Listens for HTTPS requests
• Serves web pages using the 

Django HTML renderer

PostgreSQL DBMS
• Widely used SQL extension

Django Python Renderer
• Renders HTML, CSS, and 

Javascript using logic 
written in Python

Three.JS
• 3D Renderer for browsers 

(using WebGL)


	Slide Number 1
	Premise: Here’s the Problem…
	Objective: How can we fix this?
	Slide Number 4
	Slide Number 5
	Simulation Configuration
	Simulation Visualization
	Analysis Editor
	Technologies

