
64 Point 8-bit Fast Fourier Transform
Synthesis, Placement, and Routing

Zack Fravel
CSCE Department

University of Arkansas
Fayetteville, AR, USA

zpfravel@uark.edu

Abstract—This paper describes the synthesis, placement, and
routing of a 64 Point, 8 bit FFT design who’s fully functioning RTL
Verilog was provided. As described in the RTL, the design
throughput is one transform every 32 clock cycles. The design
described in this paper was successfully synthesized, placed, and
routed with a clock frequency of 1 GHz.

Keywords—fast fourier transform; fft; opencore; synthesis;
placement; routing; innovus; primetime; synopsys design compiler;
nangate;

I. INTRODUCTION
 The Fast Fourier Transform is an extremely important
equation in mathematics whose discovery dates back to the
early 1800s and whose applications are still not fully
implemented. In short, the FFT is an equation that uses
complex numbers to describe information in the time and
frequency domains. This is extremely useful for digital signal
processing. The FFT has countless applications in the DSP
world including imaging analysis, translating
telecommunications data, as well as automotive applications
like cruise control.

II. PROBLEM FORMULATION
 While technically possible to compute using software, it’s
becoming more and more necessary to create dedicated
hardware for real time applications. This paper describes the
implementation of one such hardware FFT. The reason you’d
need hardware instead of doing it through software is simple:
time. It is much faster to perform calculations using dedicated
hardware than it is through software and general purpose
hardware.

 Since the RTL design was provided for this, the problem
formulation primarily consisted of deciding what constraints
to put on the design and with what specifications. I began the
project synthesizing using a 25 MHz clock to make sure I
could get a working design, once that was complete I pushed
the timing on the design compiler synthesis step until I
reached a 1 GHz clock and continued with that design.

 Once I had a working design the next step is figuring out

what tools to use for analysis. I used the Synopsys Design
Compiler for power, area, and timing analysis and Primetime
for timing and power analysis post-routing. All the other
information about the design was generated by Innovus in the
design summary reports.

III. ALGORITHM DISCUSSION
 As stated earlier in the abstract, this specific FFT design
has a throughput of one transform every 32 clock cycles with a
latency of 145 cycles. With a 1 GHz clock this means one
transform every 32 nanoseconds with a 145 nanosecond
circuit latency. The design requires 20 8x8 Multipliers, 32 8x8
Adders, and 6 RAMs with 64 words at 16 bits per word.

 The design uses an interleaved complex data format. Input
X0 represents the real portion of the first input and X1
represents the imaginary portion. X variables are system
inputs and Y variables are system outputs. The way the design
actually works is with flag signals. The ‘next’ input when
asserted high tells the system to expect a new input stream.
The ‘next_out’ output signal is an indicator that an output
stream is about to be outputted. The 145 nanosecond latency
means that the ‘next_out’ signal will be asserted 145
nanoseconds after the ‘next’ signal is received.

IV. IMPLEMENTATION
 The first step in the implementation process was using the
Synopsys Design Compiler to generate a gate-level netlist. I
decided to use the Nangate Open Cell Library for the design
since I have had more experience working with the library in
the placement and routing steps of the VLSI design flow. I
have included the dc.tcl script I wrote for synthesis in the
resources folder attached with this document. In the script I set
the clock frequency to 1 ns, create a real clock, use the
‘compile_ultra’ command, write out three separate reports for
area, timing, and power, and then finally write out an .sdc file
for Innovus to read in.

 The next step after confirming the design was successfully
synthesized is to begin the placement and routing process in
Innovus. Again, I am using the Nangate Open Cell Library for

all the steps in this process. For the floorplan, I used a 0.99
aspect ratio with a core utilization of 0.6 and set the core
margins to 5 microns. I then created the power rings with a 1
micron width and spacing around the perimeter of the chip.
After that, the Special Routing process was performed to
create the PG Network (Power/Ground Network). Once all of
this was complete, it is time to begin the placement process.
Images of the resulting process can be found in the
presentation attached with the report.

 After performing Pre-CTS Optimization, the design still
was meeting slack with no issue. Once Pre-CTS Optimization
was complete, the Routing process was able to begin. Routing
was a little more complicated than the one-step placement
process. With my first attempt at the design (25 MHz clock)
the routing finished in one attempt with no DRC violations.
However, with the 1 GHz clock, the Routing process took
several iterations before all the DRC violations were resolved.
The Eco-Route option was also useful at eliminating DRC
violations.

 Upon successful routing, the final step with Innovus is to
add filler cells and the metal fill. Images of the final design
and all ten metal layers can be found in the presentation
attached with the report. Once that was all complete, I
preformed RC extraction and exported the .gds layout file in
Innovus to be read by Calibre. With Calibre I was able to
confirm that indeed there were no DRC violates, all summary
reports are also attached.

 The final step in the implementation process is analysis
with Synopsys Primetime. Using a similar process as the
Design Compiler, I opted to write a script that performed
everything I needed for me. I had Primetime initialize a 1 GHz
clock with a 0.5 switching probability and then output separate
reports for timing and power.

V. EXPERIMENTAL RESULTS
 The following tables show the results from the process I
described in the previous section. The area reports I put on
here are abridged/incomplete in the interest of saving space.
The full area report can be found in the .html Innovus
summary reports included in the package.

Design
Tool
Used

Timing Reports

Data Required Time Data Arrival Time Slack

Synopsys
Design
Compiler

0.97 - 0.97 0.00
(MET)

Synopsys
Primetime 0.97 - 0.81 0.16

(MET)

Design
Tool
Used

Power Reports

Dynamic
Power

Leakage
Power Total Power

Synopsys
Design
Compiler

71.7099 mW 1.4803 mW 7.3189e+04 uW

Synopsys
Primetime 0.0643 W 1.618e-03 W 0.0807 W

Design
Tool
Used

Area Reports

Core Area Cell Area Total Area of
Chip

Synopsys
Design
Compiler

n/a
(other

information
given, check

report)

80375.090859
um2

n/a
 (other

information
given, check

report)

Cadence
Innovus

133977.564
um2 133922.754 um2 141458.335 um2

VI. CONCLUSION
 This paper presented the process of synthesizing, placing,
and routing a 64 point, 8 bit Fast Fourier Transform design
using VLSI design tools. This application specific design is
suitable for high speed real time applications where a software
implementation has proven to be too slow. Further work could
include tweaking the algorithm used in the RTL design to
achieve a faster speed, or even building up larger FFT’s using
a modular design of this 8-bit FFT design.

