
Embedded Systems (CSCE 4114)

Lab 2

Zack Fravel

9/15/16

zpfravel@uark.edu

mailto:zpfravel@uark.edu

Abstract

 Laboratory 2 consisted of designing and implementing a pulse generator as well as

changing the behavior of the original tutorial circuit to shift the LED’s. By the end of the project,

we have the 1 LED shifting to the left across the 8 spaces at variable rates based on the switch

inputs.

Introduction

 This lab is an extension of the first lab. We come at it with our previous test-bench, which

will later be slightly modified, as well as our same tutorial.vhd file we implemented in the

previous lab. We’re looking to add a shift functionality to this module, allowing the positions of

the lights to change with respect to time. The problem with our current design is there’s no way

to translate it into a timeframe that is observable by humans. Everything is happening at the

nanosecond (1x10-9 sec) level.

 It’s at this point where we need to implement what we’ll refer to as a pulse generator

module. The pulse generator will output a signal, or pulse, at a rate that we can determine in

order to be able to observe the shift. Once we have this pulse generator implemented, we should

then be able to modify the functionality of our system so that, instead of the switches controlling

configurations with one option to scroll, we have an array of LED’s that scroll at various rates

based on the switch orientation.

Design and Implementation

 The first order of business in this lab was to modify our original design to be capable of a

left shift when the switch (3) input is high. The figure at the top of the next page describes

exactly what functionally we’re looking for.

Shift module

Figure 1

This is implemented in design fairly simply. On my last “when others” case statement, I added a

condition so that on every rising clock edge the LED output signal is assigned as follows:

 LED_s (7 downto 1) <= LED_s (6 downto 0);

 LED_s (0) <= LED_s (7);

and outside the process that LED_s signal is assigned to the LED output. After that, when run in

the simulator it was working, however when downloaded to the spider, all the 4th switch seemed

to do was light up all the LED’s. This is because you cannot actually see the LED’s shifting,

they’re moving so fast because they’re shifting every clock cycle. With 1,000,000,000 ns in 1 sec

and a 20 ns clock cycle, this means the LED is shifting 50,000,000 times every second;

obviously, this is far beyond the speed any human could possibly discern.

 This is where the pulse generator module comes in! The pulse generator outputs a pulse

at a programmable rate. For our implementation, we want to pick a speed that we can observe in

real time on the board. For example, the figure below shows the pulse generator operating at a

rate of 16 Hz, or 16 pulses per second. The way this module is implemented in the design is we

add an integer signal (called counter) and create a process that checks whether or not this integer

has reached a value specified by the engineer every clock cyclce. If the signal hasn’t reached the

value, it is incremented once and the process repeats itself. So for 16 Hz we need our counter to

go to 3,125,000.

 1,000,000,000 ns per second

 / 20 ns clock cycle = 50,000,000 clock cycles per second

 / 16 Hz = 3,125,000 Clock Cycles for 16 Hz rate

Pulse Generator (Before, During, After)

Figure 2

With the pulse generator implemented and compiled, the LEDs can be seen shifting in real time.

 The final step in the lab was to modify the system so that instead of the top level design

being driven by the pulse generator but performing the logic; we want to modify the top level

design so that all it is responsible for is shifting the LED’s when it receives a pulse. We will then

add a new input to our pulse generator, connect the switches to that, and remove the excess logic

from the top level entity. Now, all that is left to do is to add the rest of the logic in the pulse

generator module for the different pulse rates in as a case statement dependent on the switches.

The implementation is as follows: for each case with the four-bit switches (0000, 0001, 0010,

etc.) we add a separate if statement that checks if the counter has reached a value specific to the

rate corresponding to the orientation of the switches.

Pulse Generator Logic

Figure 3

Final Design

Figure 4

To find the corresponding values, I used the same division process I laid out on the previous page

for each different rate (using 50,000,000 CC per second as the scale). The source code for the

final implementation is attached.

Results

 Once all is said and done and everything is compiled, we are left with what we were

wanting to accomplish! Below is a waveform showing three different rates of LED shift on the

simulation. The simulation takes place over a course of 4 sec, which takes a long time to

simulate!

Final Waveform

Figure 5

It can be observed above that the “resting state” of the functioning circuit is the LED’s shifting

once per second. After 1 second, the first switch is flipped for a rate of 2 Hz and the

corresponding LEDs are lit accordingly. Finally, the last 2 seconds of the simulation show the

circuit running at 16 Hz, which allows the LEDs to cycle twice per second. The only main issue I

encountered was in my pulse generator at first it would simulate but not act properly when

downloaded to the Spider board. After making a few modifications to the code and when the

counter variable was being reset, everything went smoothly.

 Our original problem was to modify our existing LED/switch structure to allow left shift

capability, as well as make the switches correspond to the rate at which the LED’s shift. Using a

large case statement and correctly instantiating new signals in the pulse generator and connecting

them to the original module, I came up with a design that does just that.

Tutorial.VHD

Pulse_G.VHD

Tutorial_tb.VHD

