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Introduction

The objectives of Lab 7 is to convert the Single-Cycle CPU we completed in lab 6 into a
CPU that is implemented using pipelined instruction execution. What this allows us to do is get
through our instructions much faster because we will have more than one instruction “in the
pipeline” at any given time. This optimizes our CPU and allows us to execute more instructions
in less time. However, it’s not all positive, with this pipelined design we also assume a few
hazards, which we will have to take care of in our implementation.

Approach

The high level implementation of converting our Single-Cycle datapath into a Pipelined
datapath is fairly simple. We want to break up our datapath into five phases: Instruction Fetch
(IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and Write-back (WB). Each one
of these phases in our datapath is broken up by adding a simple generic-width register that was
given to us in the lab description. This generic width allows us to set the width of the register in
our system entity, since each of our buffers take in different amounts of data.

One thing we need to take into account when dealing with a pipelined datapath is
different kinds of hazards. There are three different types of hazards: structural, data, and control
hazards. In our lab, we have a few data and control hazards we need to take care of. First of all,
because of the way our pipeline is set up, it is possible for the write-back address that we give to
the register to complete an operation to change as another instruction moves along the pipeline,
causing us to write to the wrong registers. Another thing that can happen is a branch cannot
properly execute because we have the next 3 instructions after it already in the pipeline. What we

need to do to take care of some of these hazards is add 3 nop instructions (x”0000”) after the



instructions where we have these issues. The way you figure this out is by looking where we
have RAW (read-after-write) hazards, which would be an instruction using the destination
register as an operand or a comparator immediately following the computation of that register.
This is why we need to add nops, because we have actual hardware buffers between instructions.

Below is a diagram of the datapath we are implementing.
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Since we are given the buffer VHDL code, the only implementation we need to do is in
the system entity as well as changing the instruction _in memory file to accommodate for
hazards. The main work was checking the diagram, going through and figuring out which signals
I needed to replace with a buffer output signal. With these buffer output signals, the way they’re
constructed is by concatenating multiple signals together. For example, the first buffer has an

input of d <= PC_count plus 2 & instruction. So, in order to keep track of the signals, I



constructed a table that accurately keeps track of which signal goes where within the buffer so it
was easier to connect everything in the system entity. I have attached this table to the end of the
report with the instruction_in file. Other than that, the implementation was as simple as going
through and changing any signals, for example anywhere I had an “instruction” signal as an
input, it needed to be changed to IFID out(15 downto 0) or whatever bits are necessary. After
going through the whole datapath doing this and adding the necessary nops to avoid hazards, that
was all that was needed to be done to complete the pipelined datapath.

Experimentation

The difficulty in this lab was not the concepts or the theory involved in the
implementation, it was the confusion that could come up very easily because of all these loose
signals. Building a table for all the signals was essential in getting this lab correct; without that to
keep track of which signal was where, this lab would have been very difficult to complete. For a
long time I was trying to run the simulation with the same instruction set we had in Lab 6, which
was obviously going to give me some errors as it had not accounted for hazards.

Once I started going through the instruction_in file and changed up the instructions is
where I began to actually see the success of the implementation. I went through the code and
found where we had RAW data dependancies and added 3 nops. Along with that, I also needed to
add some nops after any branch instructions. Once I was here, I still could not figure out why my
code was not working, however the final step had not been completed. To finally get everything
working, I also had to go through and recount the instructions and change where the branch and

jump instructions are pointing to, since adding the nops changed up the instruction addressing a



good amount. After changing the branch and jump to their correct destinations, the code executed
as it did in Lab 6.

Results

Below is the simulation waveform diagram for my Pipelined CPU.
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It can be seen that, just as in Lab 6, we have all the registers and memory locations set to the
values we desire. I included the buffer signals as well, not to keep track of each exact instruction,
but to demonstrate that they have different lengths. It can be seen in the MEM/WB bulffer there is
a 16 bit portion that is undefined until a certain point. This makes sense, as the data_out on the
data memory is undefined until the two SW instructions. We have register 7 and 8 = 5 and
register 9 = 0.

Conclusion

In conclusion, the pipelined datapath works as intended and we are now able to execute



instructions with a little more optimization. This lab was great at teaching how to modify an

existing project was well as what goes into a pipelined datapath. I didn’t think I’d have to spend
as much time messing with the instruction_in file as I did, but turns out that was more than half
the battle! Another useful piece of information I gained was how to do generic implementations,

allowing the actual VHDL component creation to be made for many different uses.



IF / 1D (32 bits)
31-16:PC+2
15 - 0 : instruction

ID / EX (77 bits)

76-61:PC+2
60 - 57 : a_addr
56 - 41 : b_data
40 - 25 : c_data
24 - 9 : SE_output
8 : alusrc

7 - 5:aluop

4 : branch

: readmem

: writemem

: regsrc

: regload

O =N W

EX / MEM (58 bits)

57 - 42 : branch target

41 - 38: a_addr
37 - 22 : alu_result
21 : alu_neq

20 - 5:reg_c_data
: branch

: readmem

: writemem

: regsrc

: regload

O =NwhH

MEM / WB (38 bits)
37 - 34 : a_addr

17 - 2: data_mem_out

1 : regsrc
0 : regload

Appdx
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00000101

01000011
00000000
00000000
00000000
00000000
00000000
00000000
00000010
01000100
00000000
00000000
00000000
00000000
00000000
00000000
00000000
11000011
00000100
11000100
00000100
01000110
01100000
10000111
00000000
10001000
00000000
00000000
00000000
00000000
00000000
00000000
10000111
01110011
01111000
01111001
00000000
00000000
00000000
00000000
00000000
00000000
00010111
10011001
00000000
00000000
00000000
00000000
00000000
00000000
01110001
01000111
00010001
10110000
00000100
10001010
00000000
00000000
00001111
01001111



