Zack Fravel
010646947
L0O01 - Mon. 4:10-5:55 PM
Lab 3 - Register

2/22/16

Fravel 1

Fravel 2

Introduction

The objective of lab 3 was to design and implement a register file with 16 registers, each
being 16 bits wide. This register file can basically be thought of as an array of 16 different std
logic vectors. The register is going to allow us to store and use multiple 16 bit numbers for use
with our ALU. We were given a test bench to test our register file, it was the task of the lab to
write the VHDL and parse through the simulation and analyze what is actually going on.
Approach

The register has a lot of different pieces to it. The way to think about it an paint a clear
picture is imagining an array with 16 different spaces each allowing a 16 bit number. The inputs
and outputs, a, b and c, are split into data and address inputs. The data inputs are 16 bits wide and
represent the actual numbers being used by the machine; the address inputs are 4 bits wide and
are used by the machine to differentiate between the different values stored in the 16 spaces in
the register. The outputs b and c are then passed through to the next component. We also have
load, clear, and clk inputs. The load input is an enabler, when asserted the load signal tells the
register to pass through the a_data to the a_addr on the rising edge of the clock. The address
inputs for b_addr and ¢_addr however are not associated with the clock and therefore the updated
output is always being put through regardless of the clock. The clear and clk work as they have
on previous projects, the clk is positive edge triggered and the clear is asynchronous with
negative logic. In the end what we have is a register whose outputs are always available to the
ALU, however the write-in values are determined by the rising edge of the clock.
Experimentation

The main work that was needed to be done in the lab was the actual VHDL code of the

Fravel 3

register file, since our test bench was given to us. We were given an entity outline and the high
level logical description of what the register was supposed to do. In order to create the “array of
std logic vectors” in our design, we want to create an actual array type called regfile in our
VHDL that is comprised of 16 bit std logic vectors. This is going to allow us to differentiate
between the different spaces in our register by converting the address input signals into integers
and passing that integer into the “registers” regfile signal. Since a lot of the write-in functionality
is determined by multiple inputs, the implementation began with writing a process involving the
clk, load, and clear signals. We also want to declare an integer, reg, that allows us to easily clear
the whole register using a for loop. We want to run this loop always when clear = ‘0.’ The other
part of the write-in process relies on the rising edge of the clock and load = “1,” with those two

conditions met the register converts the a_addr into an integer and passes a_data into the register

33

associated with that address. 34 entity reg file is
35 port (
36 a_data : in std 1 or (15 downto 0); -- input data port
. 37 a_addr : in std 1 or (3 downto 0); -- register select for input a
Registers 0 and 1 are always 38 load : in std 1 Z- load enable
39
40 b_data : out std_ tor (15 downto 0); -- first output data port
. 41 b addr : in std log or (3 downto 0); -- register select for output b
assigned the values x*“0000” o - -
43 c_data : out std tor (15 downto 0); —-- second output data port
44 c_addr : in std 1 or (3 downto 0); -- register select for output c
29 2 : 45
andX 0001 respeCtlvely 46 clear : in st us reset, negative logic
47 clk : in std_lo ive edge triggered clock
48)z
(these are hex representations 99 end enviry zeg files
=il
. 52
Of 16 blt numbers). Our 53 architecture Behavioral of reg_file is
54
55 type regfile is array(0 to 15) of std logic_vector (15 downto 0);
56 signal registers : regfile;

outputs, b_data and c¢_data are 57

58 begin

59 write : process(load, clear, clk) is
. 60 variable reg : integer;
always being asserted, 61 begin
62 if(clear = '0') then
63 for reg in 0 to 15 loop
M 64 registers(reg) <= x"0000";
regardless of the clock, with - nd seoms
66 elsif (rising_! (clk) and load = '1') then
67 registers(conv_integer(a_addr)) <= a_data;
the same integer address & end 1f;
70 registers (0) <= x"0000";
. 71 registers(1l) <= x"0001";
conversion. 72
73 end process write;
74
75 b_data <= registers(co gexr (b_addr)):;
76 c_data <= registers(co cer(c_addr));
77

78 end Behavioral;

Fravel 4

Results

Since we were given a test bench for our register file, its the assignment of the lab to
analyze whats going on with the vector waveform file. The test bench would output a “PASS” or
“FAIL” signal on all its tests through the Xilinx program during a simulation, so you know if the
test bench is fully being implemented and functioning correctly. The test bench begins with
declaring the clock tick signal to be 1 ns. The simulation begins with load being asserted to ‘0’ so

no data is allowed to be passed through. Below is the beginning of the waveform simulation.

» B o datal150] 0000000000000 [[ooooooogpooooo0 | | |
» Y b_dstal150] 0000000000000 [S 1 R I
» M C dataltso) 0000000000000 [S . I I
’ % a_addrBjo] 0000 I e e e
.
» B4 caddr3:0]

-H}» load

-H; clear

W ax

-H;x done

1€ tick

Here it can be seen that we have an undefined clear signal, this is because in the code for the test
bench there just actually hasn't been anything assigned to the clear signal. It isn't until the first
process where the clock cycle begins and values begin to change. The next step in the simulation
the clock is asserted, however nothing happens because the load and clear signal are both set at
‘0.” After that, we run through every possible value for b_addr, which every value has already
been set to x“0000” except of course for register 1, which is always set to x”’0001.” It can be

seen that the only time the value of b_data change is the when b_addr = “0001.”

Fravel 5

ome v |

» B a_data[15:0] 00000000000000
» B b_data[15:0] 00000000000000
» B4 c_data[15:0] 00000000000000
» B4 a_addr3:0] 0000
>
» B¢ caddr3:0] 0000

-H;} load

H}g clear

1 ak

”; done

1R tick

Value

» M o datal15o] 0000000000000 | oojoooooooooofoo | |
» B2 b_data[15:0] 00000000000000 000000000000
» M datal150] 00000000000000| I [cogoooooooooogoo |
> % P—— 0000 1
N2 b_addr3:0]
» B caddr3:0] 0000

Hr load

U,', clear

1 ak

1 done

18 tick

Il

[
oy
1=]
=]
[
=
o
[=

I

[
1=]
=
1<)
[
1=]
=
-

[
I=3
[=1
(=
=
b=3
I=1
[

L

I
I

The next part of the test bench is when things really start happening as data is being written in.
The test bench waits until the end of the clear phase and asserts the signal of clear and load to ‘1,
allowing new data to write into the register file. We then assign a_addr to x5 or “0101” and the
a_data value to x”FFFF” which would just be “1111111111111111” in binary and set b_addr
equal to x”5” as well. a_data also writes in x’CAFE” into the “F” address, which would be
address 16 or “1111.” We then make load = ‘0’ and make a change to register 5 back to
x”’0000”however this change isn't asserted. After changing load back to ‘1,” we attempt to write-
in x”FFFF” into registers 0 and 1 with a_data. However, both of those registers are hard coded

and it can be shown that b_data and c¢_data don’t change from x”0000” to x”’0001” respectively.

Fravel 6

» B a_data15:0] 1111111111111 0000000040000000 11001010 00000000P0000000 — tgoonnn ||
i Mt I

» W& b_data[15:0] 00000000000000 000000000000000 _ FEEEEEEEEEEEEEE] 000000000000 [1
—

» B c_data[15:0] 11001010111111 Doooooooooooooo

» B a_addr3:0] 0000 0 01p1

» RS ; FETR— I
E—

» B caddr3:0] 1111

1 10ad

1R clear
1B ax
1 done
 —(

6,500 ps 7,000 ps 7,500 ps 3,000 ps 8,500 ps 9,000 ps 9,500 ps 10,000 ps 10,500 ps

11111111111 1111
OOOOOOOOOOOOOOO

S S —
00000000000g0001
———————

18 tick 1000 ps

I N N N U O I N N YN A | A

Conclusion

As illustrated by the explanation of the design and simulations, the register file works
exactly how it was outlined in the design of the lab. There are no known errors. The only issue |
had in getting my code to work was making sure I was using the correct syntax in the
ieee.stdlogic.arith.all with the conv_integer function. Other than that, [had an error that where
my registers 0 and 1 weren't assigned values correctly, however it was a simple typo. After fixing
those issues, the register file ran just as it should. This lab did a really good job at showing the
levels of abstraction that are in place in Xilinx to help implement more complex ideas into a
circuit fairly simply. For example using for loops and different signals to make differentiating

different pieces of data more readable to a person.

