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Abstract 

 The purpose of this lab was to design and test a serial bit receiver. UART, or Universal 

Asynchronous Receiver/Transmitter, is the serial interface we’re designing with in mind. This is 

“asynchronous” because it isn't dependent on a system clock speed but rather an agreed upon 

baud rate. After following the lab I was successful in designing a VHDL Moore finite state 

machine that handles receiving a UART signal. 

Introduction 

 To be able to transmit and receive data asynchronously, there needs to be an agreed upon 

interface speed, or baud rate. The baud rate is the number of bits per second that a device 

transmits or receives. Specifically, for our purposes, we want to design a UART receiver that 

receives data at a baud rate of 115,200 bits/s. This means that for a 50 MHz clock rate, every bit 

has a duration of 8.68 microseconds or 434 clock cycles. Below is a diagram that shows exactly 

how the data is sent. The line is kept high (‘1’) until a START bit is detected and then the 8 bits 

of data is able to be read until the STOP (‘1’) 9th bit. 

UART Transmission Diagram

Figure 1



 It can be seen that the data transmission begins with the least significant bit and ends with 

the most significant bit. We need to take this into account when we read data into our device. For 

my design of the receiver I went with a simple finite state machine that detects the start bit, 

generates a pulse at twice the speed of the baud rate, reads in the data and displays it on the 

output as well as indicates when a valid bit has been received.  

Design and Implementation 

 As described previously, I designed a finite state machine that has three unique states. 

These states are “Waiting,” “ReadByte,” and “DisplayByte.” Below is the state transition 

diagram for my FSM.  

 

The whole module is broken up into six different processes. Before the processes however, I 

FSM State Diagram
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initialize some signals that I’ll be needing in the design. First is Pulse_s, which is a signal to be 

used to generate a pulse every 217 clock cycles. Others are a clock counter (clk_c), detect_serial, 

bitCount, dataTemp, and the dataBuffer along with the current state and next state signals. The 

first process handles the current state transition. If the reset signal goes high, the current state is 

set to “Waiting,” all other times the current state is set to the next state signal on every clock 

cycle. The second process handles the next state transition using a case statement on current 

state. In the “Waiting” state, the counters are reset and the next state is only set to “ReadByte” 

whenever the detect_serial signal goes high.  

 The detect_serial signal is handled by the third process and sets the signal to 1 whenever 

the process detects a change in the RX_SERIAL_in signal and bitCount is less than 19. Once the 

second process sets the next state to “ReadByte,” on every clock cycle the clk_c signal starts 

counting. With a case statement, I set the Pulse_s signal to go high (‘1’) every 217 clock cycles, 

then clk_c is set back to 0 and bitCount is incremented. All other times Pulse_s = ‘0.’ The other 

two processes that are running during the “ReadByte” state create two buffers. One is a 

temporary buffer that reads in the RX_SERIAL_in and appends it to the end along with its 

previous value. Then, the other process creates a buffer the size of the output (8 bits) and one 

clock cycle at a time the dataBuffer takes on the value of the dataTemp buffer and right shifts its 

value over. Once bitCounter exceeds 19, enough to take in 8 bits, detect_serial is set to ‘0’ and 

the next state is “DisplayByte;” this state is only one clock cycle long then the machine is back in 

the “Waiting” state. The final process handles all the outputs based on the current state, 

“Waiting” and “ReadByte” set RX_valid = ‘0’ and “DisplayByte” sets the RX_out to the 

dataBuffer as well as RX_valid = ‘1.’ With this design, we have a machine that sets its output 



and indicates when its output is valid on one clock cycle, however when it returns to the waiting 

state the output stays whatever value was read in. All VHDL files are included at the end of the 

report.  

Results 

 Once I had my design working as intended I designed a test bench that would suitably 

show all the functionality of the design. In my testbench I instantiate a 20 ns clock cycle (50 

MHz) and create one process. In this process, I wait for 8680 ns, or the length of one bit in the 

UART baud rate, set reset to ‘1,’ wait 20 ns, and set reset to ‘0.’ I wait for one more bit length, 

set RX_in to ‘0’ (START bit) and with nine more “wait for 8680 ns” and setting the RX_in to a 

different value each time, I’m able to simulate a whole byte transmission in UART. Then finally I 

make the circuit wait for 3 bit lengths and connect my entity. The byte I send in to the RX_in 

over the whole time is “01100101.” Below is the simulation waveform of my testbench.  

Simulation Waveform

Figure 3



 It can be seen on the simulation waveform that the circuit works exactly as described. 

Once the start bit is detect on the serial input, the counters start spinning up and a pulse is 

generated every 217 clock cycles. On each odd pulse, the value of RX_in is read into the 

dataTemp buffer and subsequently read in and right shifted into the dataBuffer. After 19 pulses, 

the state is set to “DisplayByte”  where the output is set to the dataBuffer and RX_valid = 1. 

Following that, the circuit is set back into the “Waiting” state and the reset signal is asserted after 

a time. In total, I spend probably at least six hours designing the module.  



Source Code 

 





 


