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Abstract

This paper proposes a possible solution to reducing power consumption on CMOS
multiplier circuits. Specifically, this paper looks into one of sixteen of the ancient sutras in Vedic
Mathematics, Urdhva Tiryagbhyam, and its application in multiplier circuits. The main concept
that allows the Vedic Multiplier to be more efficient than a standard Shift-and-Add multiplier is
its use of parallelism and hardware reduction in order to reduce area and thereby reduce power
consumption. I designed two 16x16 multipliers, one standard shift-and-add multiplier using the
“shift-and-add” approach and one Urdhva Tiryagbhyam multiplier. My expectations were
unfortunately unconfirmed with my designs as [ wasn’t able to show that the Vedic multiplier
consumes less power than an shift-and-add multiplier.
Introduction

Multipliers are used in most computing applications with many different possible
algorithms and methods to go about computation. The main factor that is desirable to reduce in a
multiplier is computation time. There are two different categories of multipliers, serial and
parallel. Parallel multipliers reduce power by reducing the time the circuit it running per

computation. Below I give the equation for power consumption in CMOS circuits.

_ 2
P=aC_ Vppf +at,Vpp lpeak f + Voo lieakage

The main aspect of the equation this paper’s designs focus on are the reduction of power through
the reduction of circuit area and therefore, Cr, or load capacitance. The load capacitance is a

function of circuit area (wire length, fanout, etc). There are many different kinds of parallel
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multipliers, we will be focusing on the Shift-and-add and the Vedic Urdhva Tiryagbhyam
multipliers.

A total of 16 sutras (algorithms) were discovered through research of the ancient Vedas.
These Vedic mathematic algorithms were meant for all kinds of computation (addition,
subtraction, multiplication, and division), including being able to handle complex numbers. The
algorithms all share a common trait in that they speed up the calculation through the reduction of
complexity and hierarchical design. The hierarchical nature of the design makes it very easy to
design a basic 2x2 bit design and from there obtain an NxN bit design.
Background

The concept of multiplication, when broken down, is just repeated addition N number of
times. It would not be unreasonable to suggest that a circuit design that simply adds two numbers
N number of times would not be the most efficient way of performing this sort of calculation.
This would be a ‘serial’ calculation. A ‘Parallel’ calculation involves manipulating your inputs
such that fewer partial products need to be generated and subsequently added together. This
allows the calculation to be complete faster, reducing the time the circuit is under load, thereby

reducing power.
MULTIPLICAN® MULTIPLIER

Before going into the theory of the Vedic multiplier design, it is best
. . . Lo . . . Partial Product Generator
to be familiar with how binary multiplication works. To the right is a TRw
XX
diagram showing an example of binary number multiplication. These partial %o e e e
XL

products are generated using the AND operator and then summed together

sfesfe sk sk skokok
to generate a final result. The first design we will look at is the most simple, Rorckx
Partial Product Array Reduction
performing 15 shifts on the multiplicand and adding up the 15 partials. %}
sk ok ok ok

Final Addition
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Theory

The Shift-And-Add Multiplier works by simultaneously running AND comparisons of the
multiplicand’s bits with all the shifted multiplier bits and adds them all together at the end of the
circuit. Below is a diagram of what the circuit is doing to generate a result for a 4x4 bit
multiplication. This general structure stays the same for N bits. All that is needed to expand this
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Final adder

‘ P7 * P6 ‘ Ps * P4 P3 wyp A 23 A AR
design and make larger is to increase the number of rows and columns of adders/AND gates to
the number of bits you wish to multiply and connect accordingly.

Of the two different Vedic multiplication algorithms, this paper focuses on the Urdhva
Tiryagbhyam algorithm, which means literally “vertically and crosswise.” This sutra simplifies
multiplication by generating partial products and summation in a single iterative step. The sutra
works by performing a simple comparison of two bits and then being able to use that same
process to build larger and larger multiplier blocks to multiply bigger numbers. Since the actual
logical comparisons are now very small, this helps to reduce the area and delay, and therefore

power. On the beginning of the next page is a diagram displaying how this algorithm works.
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All that is needed for this is two half adders and four AND gates, circuit diagram given below.

at b1 A o a0 b0

at b0
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Half Adder
Half Adder
I I !
q3 g2 q1 q0

From this 2x2 bit Vedic multiplier, a hierarchical design can be formed to construct a 4x4 bit

Vedic multiplier, as shown below.

b[3:2] b(3:2] b[1:0] b[1:0]
+a[3:2] al1:0] a[3:2] a[1:0]

2x2 2x2 2x2 2x2
multiply multiply multiply multiply
block block block block
X * A q1i3:0] A" qo[3:0]
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This is the structure from which the rest of the multipliers will take form. To build an 8x8
bit you use the same exact structure, just replacing the 2x2 multiply blocks with 4x4 and
adjusting the size of the partial products accordingly to accommodate 8 bits. The same thing is
done to be able and perform 16x16 bit multiplication. It can be seen in the design of the Vedic
multiplier that the way it splits up the partial product production allows each signal path to be the
same length, the result all arrives at the same time whereas on other multiplier designs there is an
adder chain that causes a delay in producing the final result. This concludes the theory discussion
behind the designs, next is the implementation in Verilog.

Application
Both multiplier circuits were designed in ModelSim using Verilog as the HDL of choice.

First is the shift-add multiplier. Below I have given the code for the shift-add multiplier.

: C:/Users/zack/Documents/Low Power Project/ShiftAddMultiplier /ShiftAddMultiplier.v - Default

Ln=
1 =]
5 [ module ShiftAddMulciplier(a, b, o):
é ir [15:0] a, b:
9 ire[15:0] pl,p2,p3,p4,p5,p6,p7,p%,p%,p10,p11,pl12,p13,pl4,pl5,plé;
11 assign pl = (b[0]==1'bl) =2
12 np2 = (b[l]==1'bl) 2
13 np3 = (b[2]==1"kl) =2
14 npsd = (b[3 1'bl) 2
15 npS = (b 'pl) 2
16 npé = (b =1'pl) 2
17 np7 = (b[é]==1"kl) =2
18 npeps = (b[ =1'pl) 2
19 np2 = (b[E]==1"k1l) =2
20 n plld = (b[28]==1"k1) =2
21 n pll = (b[10]==1"k1) 2
22 npl2 = (b[11l]==1"kl) 2
23 n pl3 = (b[12]==1"kl) 2
24 n pld = (b[13]==1"kl) 2
25 n pls = (b[14]==1"kl) 2
26 m plé = (b[15]==1"kl) 2
28 a3zign o = pl+p2+p3+p4+pS+pé+pT7+pE+p9+pl0+pll+pl2+pl3+pl4+plS+plé;
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It can be seen that the result is dependent on the sixteen previous conditional comparisons with
the multiplicand and the shifted multiplier. I designed a testbench to run through all of the

possible input combinations, below is a screenshot of the operating circuit.
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It can be observed on the third row that the HDL Synthesis Report

Macro Statistics
# Adders/Subtractors
17-bit adder
18-bit adder
19-bit adder
20-bit adder
inputs on the first two top rows. The bottom 22 e adder
23-bit adder
24-bit adder
. . . . 25-bit adder
shows the signals of the shifted multiplier. | have = ze-sic acser
27-bit adder
28-bit adder
. . 29-bit adder
also included a snapshot of the synthesis report 30-bsc adder
-bit a er
# Multiplexers
32-bit 2-to-1 multiplexer

[

output is the resulting multiplication of the two
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given by the Xilinx design tool when

synthesizing the design. This details the actual . Advanced HDL Synthesis :

Synthesizing (advanced) Unit <ShiftAddMultiplier>

blocks used in the design that has the power e me following addere/subtractors are growped into adder tree <Madd nO186(3

<Madd n0144[16:0]> in block <ShiftAddMultiplier>, <Madd n0147[17:0]>
Unit <ShiftAddMultiplier> synthesized (advanced).

analysis information.

Advanced HDL Synthesis Report

Macro Statistics

# Adder Trees .
31-bit / 16-inputs adder tree : 1
# Multiplexers : 16
32-bit 2-to-1 multiplexer : 16
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Next is the implementation of the Urdhva Tiryagbhyam multiplier. Below I have given

the Verilog code for the 16x16 bit Vedic Multiplier.

B/ Zack Fravel

// 16x16é Vedic Multiplier Verilog Implementation
// Low Power Digital Systems

[ module VedicMultiplier(a, b, o):

input [15:0]a, b;

output [31:0]o;

// internal signals

wire [15:0]q0, ql, q2, 93, g4, templ;
wire [23:0]95, g€, temp2, temp3, temp4;
wire [31:0]o0;

// Generate Partial Products using 4 Parallel E&x8 Vedic
multiplyg Ml(a[7:0], b[7:0], qO0[15:0]):
multiply® M2(a[15:8], b[7:0], ql([15:0]):
multiply® M3(a[7:0], b[15:8], q2[15:0]):
multiply® M4(a[15:8], b[15:8], q3[15:0]):

// Parrallel
assign templ
azsign q4

assign temp2
assign temp3
assign g5

assign temp4

adding up partials
{8'h00, qO0[15:8]}:
gl[15:0] + templ;
{€'h00, q2[15:0]}:
{q3[15:0] , &8'h00};
temp2 + temp3;
{8'h00, q4[15:0]}:

// Final partial product addition
assign qé = tempd + g5;

// Send product to ocutput

assign o[7:0] g0[7:0]:

assign o[31:8] qé[23:0];
endmodule

[ module multiply2(a, b, o):
input [7:0]a, b;
ocutput [15:0]e;

// internal signals

wire [7:0]q4, templ;

wire [11:0]q5, q€, temp2, temp3, temp4;
wire [15:0]q0, ql, 92, q3, ©;

// Generate Partial Product using 4
multiply4 Ml(a[(3:0], b[3:0], q0[15:0]):
multiply4 M2(a[7:4], b[3:0], ql[15:0]):
multiply4 M3(a[3:0], b[7:4], qQ2[15:0]):
multiply4 M4 (a[7:4], b[7:4], q3[15:0]):

// Parallel adding up partials
assign templ {4'h0, qO0[7:4]}:
assign q4 gql[7:0] + templ;
assign temp2 {4'h0, q2[7:0]}:
assign temp3 {g3[7:0], 4'h0};
assign q5 temp2 + temp3;

assign temp4 {4'h0, q4([7:0]}:

// Final addition
assign qé = tempd + g5;

// Send product to output

assign o[3:0] q0[3:0];

assign o[15:4] qé[11:0];
endmodule

67
68
69
70
71
72
73
74
75
76
77
78
79
g0
gl
g2
g3
g4
85
g6
87
ge
g9
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Parallel 4x4 Vedic M 104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
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B module multiply4(a, b, o)
input (3:0]a, b;
cutput [7:0]o;

// internal signals

wire [3:0]q0, ql, q92, q3, q4, templ;
wire [5:0]q95, g€, temp2, temp3, temp4;
wire [7:0]o0;

// Generate Partial Product using 4 Parallel
multiply2 Ml(a[(l:0], b[1:0], qO0[3:0]):
multiply2 M2(a([3:2], b[1:0], ql([3:0]):
multiply2 M3(a([1:0], b[3:2], q2([3:0]):
multiply2 M$(a([3:2], b[3:2], q3[3:0]);

// Parallel adding up partials

assign templ = {2'b00, q0[3:2]}:
assign q4 = ql[(3:0] + templ;
assign temp2 = {2'b00, q2([3:0]}:
assign temp3 = {q3[3:0], 2'b00};
assign g5 = temp2 + temp3;

assign tempd = {2'b00, q4([3:0]}:

// Final addition
assign qé = tempd + q5;

// Send product

assign o[1:0]

assign o[7:2]
endmodule

to output
q0[1:0];
qé[5:0];

B module multiply2(a, b, 0):
input (1:0]a, b;
output [3:0]o;

// internal signals
wire [3:0]o0, temp;

// AND all input combinations

assign o[0] = a[0]sb[0];

assign temp[0] = a[l]sb([0]; I
as33ign temp(l] = a[0]sb[1]:

assign temp(2] = a[l]lsb[1]:

// Generate Product using two Half Adders

halfAdder HA2 (temp([2], temp(3], ©[2], ©o[3]):
endmodule
B module halfRdder(a, b, Sum, cCut);

input a, b:;

output Sum, cCut;
as33ign Sum = a“b;
assign clut = aszb;

- endmodule

L8]

halfAdder HAl (temp(0], temp[l], o[l], temp(3]):
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It can be seen that even though the code is kind of long, the algorithm is very simple. It all starts
at the bottom with the halfAdder module. Above it, it can be seen that the multiple two takes the
inputs and runs four AND comparisons using the Vedic algorithm and adds those partials. If you
follow the hierarchy up, it can be seen that the multiply4 module sets the design pattern trend for
the parent modules, performing four parallel multiplications and following it up with parallel
appropriate additions to generate the partials with one final addition producing the result at the
end. It can be seen that the multiply8 and VedicMultiplier modules follow this exact same
pattern, however the only difference being adjusting the signal sizes and inputs/outputs to
accommodate for larger data. Below I have included the Xilinx synthesis report as well as a

screenshot of the simulation given by ModelSim.
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Macro Statistics

# Adders/Subtractors 63
12-bit adder 8
16-bit adder 1
24-bit adder 2
4-bit adder 16
6-bit adder 32
8-bit adder 4

# Xors 128
1-bit xor2 128

* Advanced HDL Synthesis

Advanced HDL Synthesis Report

Macro Statistics

# Adders/Subtractors 63
12-bit adder 8
16-bit adder 1
24-bit adder 2
4-bit adder 16
6-bit adder 32
8-bit adder 4

# Xors 128
1-bit xor2 128

Results and Analysis
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Once the designs were synthesized, the only thing left to do was to run a power analysis.

I used Xilinx Vivado design suite to analyze the power of my designs. Below are the results

when I ran a power analysis for the circuits.

Shift-Add

Summary

Power analysis from Implemented netlist. Activity On-Chip Power

derived from constraints files, simulation files or i

vectorless analysis. ] Dynamic:

Total On-Chip Power: 20.42 W [ O signals:
Junction Temperature: 53.5°C 97% a5% M Logic:
Thermal Margin: 31.5°C (21.3 W) Oyo:
Effective §)a: 1.4 °CAW :

Power supplied to off-chip devices: 0 W ¥ Device Static:
Confidence level: Low

Launch Power Constraint Advisor to find and fix
invalid switching activity

19.832 W

1.700w
1.281 W
16.852 W

0.587 W

(97%)

Vedic

Summary

Power analysis from Implemented netlist. Activity
derived from constraints files, simulation files or
vectorless analysis,

Total On-Chip Power: 33.318 W
Junction Temperature: 71.6°C
Therrnal Margin: 13.4°C(3.9W)
Effective 9JA: 1.4 °Chw
Power supplied to off-chip devices: 0w
Confidence level: Low

Launch Power Cons Advisor to find and fix

invalid switching activity

On-Chip Power

97%

[ Dynarnic:
[ Signals:
s [ Loqic:
0 /0:

[ Device Static:

2183w

2,533 W
2,439 W
27.211 W

1135w

{97%
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It can be seen that my results were not actually the results I expected from my designs. The
Vivado power analysis shows that my Urdhva Tiryagbhyam multiplier consumes 32.183 W of
Dynamic power, which is what we’re concerned with. The Shift-Add only consuming 19.832 W.

The equation for dynamic power is given below.

P=aC, Vpp°f

To restate, this equation tells us that the total load capacitance is one of the primary
variables of dynamic power. Earlier I discussed that the load capacitance is itself a function of
the area of the circuit (larger circuit, larger capacitance). Taking a look back at the synthesis
results, it can be seen that the Urdhva Tiryagbhyam design uses a good amount more hardware
than the shift-add, which is the opposite from what we expect to see. There are many things that
could potentially cause this, however I think what happened was the synthesis tool ended up
designing a circuit that was slightly different from what was intended in the verilog code.
Conclusion

In summary, the results gathered were not exactly the expected results from the research
gathered. Again, this is likely due to a misstep the synthesis tool took in producing a ‘more
efficient’ design in the tool’s eye where we were looking for a different design. To restate the
original problem, this has been a study of the Urdhva Tiryagbhyam algorithm with another
parallel multiplier design in an effort to achieve lower power consumption. The application of
ancient Vedic algorithms to CMOS circuits in an effort to achieve more efficient designs gives

designers a possible option when looking to reduce power consumption.
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