
Embedded Systems (CSCE 4114)

Vending Machine FSM

Zack Fravel

9/23/16

zpfravel@uark.edu

mailto:zpfravel@uark.edu

Abstract

 The first classwork has to do with the design and implementation of Finite State

Machines. Specifically, the objective of the classwork was to get familiar with state machine

logic, implement a solution for displaying information using the HEX display on the DEB2

development board, and finally bringing it all together to design a Vending Machine.

Introduction

 Most of the final design choices in our vending machine were left up to us to decide on

our own solution. There are two different types of state machines, Moore and Mealy. A Moore

machine’s outputs are determined solely based on the state the machine is currently in. A Mealy

machine, on the other hand, shows different outputs on each transition between states. I chose to

design a Moore FSM for my vending machine, mostly because I like that the implementation in

VHDL of a Moore Machine is much more modular.

 For the first week of the assignment, we were tasked with creating the module that

displays information on the DEB2 board LED’s. This basic design revolved around creating one

design to display hexadecimal information on one set of LEDs, and then creating a top level

module of the previous to be able and control multiple displays. The vending machine takes

inputs for both money, choice of refreshment, and a reset. The vending machine outputs the

information using displays where it shows the money in the machine, the choice, and the

resulting output. The vending machine takes 5 cent and 10 cent coins with a maximum capacity

of 20 cents. The other possible inputs are the choices one can make when using the vending

machine: candy (5c), cookie (15c), coke (20c), and refund (only full). All the inputs are

represented by buttons and switches on the board.

Design and Implementation

 In chronological order we designed an LED module, an array of LED’s, and an FSM to

control the state of the LEDs. All VHDL files are attached at the end of the report as screenshots

as well as the original .vhd files in the report package. The seven segment display is our first

order of business. Each SSD can be thought of a std_logic_vector of 7 bits. Each bit represents

one of the seven segments the display is able to light up. The LED’s on the board are designed so

that “0” actually represents the on-state and “1” for off. With that in mind, If we take a 4 bit input

we’re able to create a case statement and have a different configuration of LED’s for each case

on the 4 bit input. This is exactly what was accomplished, each input asserts its hexadecimal

representation of itself on the SSD output for all 16 combinations. The module that lets us

control four displays at once is a little more complex, its diagram is shown below.

Four Display Diagram

 Figure 1

It can be seen from the diagram that the module continuously counts through the four different

inputs to the mux, which represent 4 different inputs to an SSD module, and sends them one at a

time to a single SSD module. This SSD module then sends its outputs to the output on the parent

four display module who’s outputs are continuously scrolling through each of the 4 SSD’s. This

is happening at a rate so fast however, it’s not noticeable to the human eye. In effect, this allows

us to control 4 SSD’s with only one module and one set of inputs.

 Now that we have a way to display our vending machine information, we’re able to

design the FSM (Finite State Machine). To recap, out FSM takes in seven inputs (Reset, Nickel,

Dime, Candy, Cookie, Coke, and Refund) and sends out three outputs (Cash, Choice, and Result)

which is broken down into four SSD’s. I have decided with my state machine to have the Cash

be represented by the first two displays, the Choice the third, and the Result on the final display.

Candy costs 5 cents, Cookies 15 cents, Coke 20 cents, and the only refund the machine can do is

full, not partial. Below is a graphical representation of my FSM design for the vending machine;

wherever there is an X, that means there could be a number of possible configurations depending

on the inputs.
Vending Machine Diagram

Figure 2

My state machine has nine total possible states, their names being fairly self descriptive. I have

one state dedicated to each different sum of cash that can be possibly dispensed into the machine

(20 cents maximum) as well as states for each output and of course an initial state. Below I have

also included the parent diagram for the whole vending machine system.

 Vending Machine

Figure 3

 The implementation in VHDL of the FSM is fairly straight forward. I declare my inputs

and outputs exactly as they’re shown above where it says FSM. The inputs all being std_logic

and the outputs being std_logic_vector(7 downto 0) for cash and (3 downto) for the other two.

Choice is represented in hexadecimal as 1, 2, 3, 4 (Candy, Cookie, Coke, Refund) and the

outputs A, B, C, -blank- or d on the SSD. I declare a type STATE in my architecture to represent

all the possible states and create two signals, next_state and current_state to tell the tool which

state I’m in and where I’m going to be. Along with that, I also create a signal called choices,

which is a concatenation of all the possible choice inputs and is being fed directly to the output

process.

 The logic of the state machine is broken up into three processes. First, I have my Current

State Transition, which is sensitive to the clock and reset. Within this first process is a simple if

else if statement that changes my current state signal to whatever the next state signal is, unless

Reset = ‘1,’ then current state is Initial. The second process, and by far the longest to write, is the

Next State Transition Process. This process is sensitive to all inputs and is responsible for

making sure the state machine correctly changes state based on a pattern of inputs. How this is

implemented in VHDL is a case statement that is accounting for each case of the signal

current_state and tells the circuit where to go based on the inputs in each case with if statements.

In every case, the first if statement is always if (Reset = ‘1’) then next_state <= Initial. After

that, the nested if statement within the else tells the FSM which state to move to based on

whether a nickel or dime is inserted. Along with that, on each case where there is money in the

machine, the FSM also has to check whether or not any of the choice inputs are asserted, if so

then it should change to the appropriate output state given there’s an appropriate amount of cash

in the vending machine. Once all of those cases are accounted for, then I just had to make sure

that for the output states the next_state is always Initial so the vending machine can reset.

 The final process is much shorter than the second and is responsible for setting the output

of the FSM correctly based on the current state. The output process also has a choice case

statement so the vending machine displays user inputs to the LED’s, regardless if the transaction

is legal or not. If the transaction is allowed, the output will show but it won’t if theres not enough

cash. The current state case statement just assigns the outputs respectively to each case as

described on the previous page. All three of these processes run concurrently and the resulting

logic is the behavior we were striving for.

Results

 Once I had my design compiled and was confident it would perform the way it was

specified, I designed a testbench to simulate the design. My testbench runs through five different

scenarios to show that all of the functionality performs as advertised. I initialize a 20 ns clock

cycle and instantiate my FSM module into the testbench with corresponding inputs/outputs.

Below is the first half of the simulation.

Simulation (pt. 1)

Figure 4

The first 100 ns of the simulation runs through one of the simplest cases, requesting a candy and

inserting a nickel, which correctly outputs “A” to the Result display. During the duration the

candy is being requested, “1” is being displayed on the Choice display. It can also be seen that

the Cash is correctly shown as well on the first two displays. The second test states with a dime

being inserted and the FSM correspondingly changes states. Then, the user requests a coke and

inserts two nickels. Only after the FSM makes the two necessary transitions to Twenty is it able

to make the transition to Coke_out and output “C” on the display. In my test bench I had to split

up each “coin insertion” by about 20 nanoseconds to account for the delay in the state transition.

 The second half of the simulation shows some more uncommon cases and how the

vending machine will handle it properly.

Simulation (pt. 2)

Figure 5

The third test is a test of the Reset functionality, mostly. I created a case where the user inputs

two nickels and requests a Coke, but before inserting 20 cents I reset the machine. This shows

both that the reset works and the output logic works as well. The fourth test shows a case where

the user requests a cookie and inserts more than the appropriate amount of Cash, but still

receives the appropriate output, “B.” Finally, the fifth test shows the refund function working

properly and displaying “D” after the user inputs 15 cents. The FSM then resets and the

simulation is complete. When implemented on the board, each of the coins are mapped to two of

the push buttons and the choices and reset are represented by switches.

 In conclusion, a previously designed SSD module and designing a Moore FSM using

three distinct processes, I was able to successfully design and implement a vending machine as

specified by the classwork assignment.

