
Embedded Systems (CSCE 4114)

Lab 5

Zack Fravel

11/4/16

zpfravel@uark.edu

mailto:zpfravel@uark.edu

Abstract

 The purpose of lab 5 was to design and implement a wishbone-bus architecture to be used

by the UART transmitter/receiver. Task 1 had us write the VHDL code and simulate a wishbone

slave; Task 2 involved implementing the design from Task 1 into a larger system to be used on

the DEB2 board in conjunction with the Termite app.

Introduction

 The bus protocol we’re using, Wishbone, is a design where the bus includes Address,

WriteData, ReadData, Instruction, and Control signals in order to process transactions between

different hardware modules. Below is a diagram of the bus architecture we wish to implement.

An example transaction between a master and slave would be as follows. If the master wants to

read the data stored at a certain address, the master sends STB_O and CYC_O to the slave to

indicate a transaction is about to begin. With WE_O = ‘0’, the slave knows the master wishes to

read the data stored in the registers associated with ADR_I’s address. Once the slave has this

information, it sends the ACK_O signal to the master along with the requested DAT_O. The only

difference with a “write” transaction is WE_O = ‘1’ and DAT_I contains some value.

Wishbone Architecture

Figure 1

Design and Implementation

 Task 1 of the lab had us design the wishbone slave module and use the testbench in our

simulations to simulate the behavior of the master interface. Within the wishbone slave there are

registers, for which the master sends 32 addressing bits to access; we’re only required to

implement eight of these registers. Below is the diagram for the wishbone slave design, as well

as the register specification we are implementing.

Figure 2

Wishbone Slave Top Level Diagram

Wishbone Slave Register Specification

Figure 3

 To reiterate, our wishbone slave contains eight registers (0x00000000 - 0x00000007),

with 0 - 3 containing the status of the switch signals represented on the DEB2 board. Registers

4 - 7 are not only able to be read, but also are able to be written to and their content’s bits (3

downto 0) control the four seven segment displays on the board. The implementation of this in

VHDL is fairly straight forward. First, I declare five signals to be used throughout the design,

four to be used for the SSD’s and one used later on for the acknowledgment signal. The majority

of the design lies within one process sensitive to the CLK_i, on each clock cycle the process sets

the tempAck = ‘0’ and checks whether WB_STB = ‘1’ and WB_CYC = ‘1’ to indicate a

transaction. This is broken up into two separate if statements, one for writing (and WB_WE =

‘1’) and one for reading (and WB_WE = ‘0’). Within the “Read” if block, I set the tempAck = ‘1’

and have a case statement for the eight cases of register addresses we wish to account for (on

previous page). For example, the second register’s declaration is “when x”00000001” =>

WB_DAT_o <= “0000” & SW_i (7 downto 4) (second set of switches).

 The “write” if block is very easy to impliment. For the first four cases, I just have null

since they’re read only registers. For cases 0x”00000004” - 0x”00000007” I set the

corresponding internal SSD signal to that register to weaver the WB_DAT_i signal is at the time.

I also set the output to the data being written in. For all other cases it is also null. Below the

process I have the WB_ACK_o signal set to “and” the tempAck and WB_CYC and WB_STB

signals so there is no overlap with the acknowledgement signal whenever a transaction is

finished. Other than that, the only other thing included in the wishbone slave design is the

connection between the SSD signals and the Lab 3 module used to control the displays.

 Once Task 1 was completed, Task 2 was fairly straight forward in terms of designing and

implementing. Task 2 had us implement a larger system that we could use in conjunction with

the DEB2 development board. Provided to us was a UART to Wishbone controller module that

allows us to send “read” and “write” commands to our wishbone bus using the Termite app in

windows. Below is the specification for the commands we’re able to send through the app.

In order to get the design to work as we’d like to on the board we need to design a top level

entity and connect all the pieces together. Below is the schematic for the top level design.

UART to Wishbone commands

Figure 4

Top Level Circuit Diagram

Figure 5

In VHDL, the top level design is fairly easy. I declare my internal signals between the uart2wb

and the Wishbone slave and then instantiate the two modules below. The main thing to be careful

about when connecting the modules is to make sure and connect outputs to inputs and not get

confused with the data_in signals. All VHDL source files are attached to the report.

Results

 For the results on Task 1, I designed a testbench that mimicked the behavior of a

wishbone master requesting to read each of the four read-only registers and writing A, B, C, D to

the four SSD registers. Below is the simulation waveform for the testbench I designed.

Lab 5 Behavioral Waveform

Figure 6

It can be seen above that the Wishbone slave I designed correctly responds to the master’s

requests as laid out by the specification I described earlier in the report. The acknowledgement

signal is only high during the times the master is requesting the data, and has no overhang. It can

be seen on each write operation that the module correctly outputs the written in data on the

display corresponding to the register written to. I also chose to have my module send the written

data back out, although there isn't much purpose to this other than maybe verification with the

master. The testbench successfully tests for all cases we have to account for.

 In order to test Task 2, I configured my DEB2 board’s switches to have the values

x”4321” or “0100 0011 0010 0001,” compiled my designs, loaded them into the board, and

launched termite. With the termite app set to the correct baud rate of 115,200 bits/s I was able to

start verifying that my design works as intended. The following screenshots show, in order, me

reading from the four read-only registers, which correspond to the status of each set of four

switches. Following the reads, I change the orientation of the second set of switches and read

again to show the values correctly updated. After the read operations I then send four write

operations to each of the SSD registers to display “ABCD” on the displays.

Initial Switch State

Initial Read

Change Contents of Register 2

Second Read and ABCD Write Commands

Final Output on Board

Figure 7

 It can be seen from the pictures and screenshots above that my design works precisely as

described in the lab description. In total, I did about five hours or so of actual work and

designing to complete the lab. In conclusion, the lab did a good job of exposure to the ideas

around bus architectures and what goes into designing a total system that is able to have inter

communicating pieces to it. All VHDL files are included with the report, as well as the testbench.

